Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Techno-economic analysis of three HVAC retrofitting options
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Installations- och energisystem. Högskolan Dalarna. (SERC)
Högskolan Dalarna.
Högskolan Dalarna.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Installations- och energisystem.ORCID-id: 0000-0003-1882-3833
2014 (Engelska)Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

Accounting for around 40% of the total final energy consumption, the building stock is an important area of focus on the way to reaching the energy goals set for the European Union. The relatively small share of new buildings makes renovation of existing buildings possibly the most feasible way of improving the overall energy performance of the building stock. This of course involves improvements on the climate shell, for example by additional insulation or change of window glazing, but also installation of new heating systems, to increase the energy efficiency and to fit the new heat load after renovation. In the choice of systems for heating, ventilation and air conditioning (HVAC), it is important to consider their performance for space heating as well as for domestic hot water (DHW), especially for a renovated house where the DHW share of the total heating consumption is larger.

The present study treats the retrofitting of a generic single family house, which was defined as a reference building in a European energy renovation project. Three HVAC retrofitting options were compared from a techno-economic point of view: A) Air-to-water heat pump (AWHP) and mechanical ventilation with heat recovery (MVHR), B) Exhaust air heat pump (EAHP) with low-temperature ventilation radiators, and C) Gas boiler and ventilation with MVHR. The systems were simulated for houses with two levels of heating demand and four different locations: Stockholm, Gdansk, Stuttgart and London. They were then evaluated by means of life cycle cost (LCC) and primary energy consumption. Dynamic simulations were done in TRNSYS 17.

In most cases, system C with gas boiler and MVHR was found to be the cheapest retrofitting option from a life cycle perspective. The advantage over the heat pump systems was particularly clear for a house in Germany, due to the large discrepancy between national prices of natural gas and electricity. In Sweden, where the price difference is much smaller, the heat pump systems had almost as low or even lower life cycle costs than the gas boiler system. Considering the limited availability of natural gas in Sweden, systems A and B would be the better options. From a primary energy point of view system A was the best option throughout, while system B often had the highest primary energy consumption. The limited capacity of the EAHP forced it to use more auxiliary heating than the other systems did, which lowered its COP. The AWHP managed the DHW load better due to a higher capacity, but had a lower COP than the EAHP in space heating mode. Systems A and C were notably favoured by the air heat recovery, which significantly reduced the heating demand.

It was also seen that the DHW share of the total heating consumption was, as expected, larger for the house with the lower space heating demand. This confirms the supposition that it is important to include DHW in the study of HVAC systems for retrofitting.

Ort, förlag, år, upplaga, sidor
2014.
Nyckelord [en]
HVAC, retrofit, techno-economic, heat pump, ventilation radiator, gas boiler, LCC, primary energy, dynamic simulation
Nationell ämneskategori
Energiteknik
Forskningsämne
Energiteknik; Byggvetenskap
Identifikatorer
URN: urn:nbn:se:kth:diva-150454OAI: oai:DiVA.org:kth-150454DiVA, id: diva2:743443
Konferens
Roomvent 2014
Projekt
iNSPiRe
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 314461
Anmärkning

QC 20150305

Tillgänglig från: 2014-09-04 Skapad: 2014-09-04 Senast uppdaterad: 2015-09-04Bibliografiskt granskad
Ingår i avhandling
1. Energy efficient and economic renovation of residential buildings with low-temperature heating and air heat recovery
Öppna denna publikation i ny flik eller fönster >>Energy efficient and economic renovation of residential buildings with low-temperature heating and air heat recovery
2015 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools.

Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW.

Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.

Abstract [sv]

Byggnader står för omkring 40 % av den totala energianvändningen i EU. Energieffektivisering av byggnader är och fortsätter därför att vara en viktig fråga. Även om stora framsteg har gjorts när det gäller att minska energianvändningen i nya byggnader så är det stora beståndet av befintliga byggnader med dålig energiprestanda förmodligen ett ännu viktigare område att fokusera på. Denna avhandling behandlar energieffektiviseringsåtgärder som kan lämpa sig för renovering av befintliga hus, i synnerhet lågtemperaturvärmesystem och ventilationssystem med värmeåtervinning. Energiprestanda, miljöpåverkan och kostnader utvärderas för en rad systemkombinationer, för små och stora hus med olika värmebehov och för olika klimat i Europa. Resultaten togs fram genom simuleringar med energiberäkningsprogram.

Lågtemperatursystem och värmeåtervinning framstod båda som lovande lösningar för energieffektivisering av europeiska hus, särskilt i norra Europa, eftersom dessa åtgärder har större effekt i kalla klimat och på hus med stort värmebehov. Prestandan för värmepumpar, såväl av utelufts- som frånluftstyp, förbättrades med lågtemperaturvärmesystem. Valet mellan frånluftsvärmepump och värmeåtervinning till ventilationsluft kan antas bero på specifika förhållanden för varje fall, men de är båda mer kostnadseffektiva och har lägre miljöpåverkan än system utan värmeåtervinning. Värmepumpen har fördelen att den kan återvinna värme året runt, förutsatt att den producerar varmvatten.

Ekonomiska och miljömässiga aspekter av energieffektiviseringsåtgärder stämmer inte alltid överens. Dels lägre kostnad ibland betyda större miljöpåverkan, dels kan det finnas divergens mellan olika miljöaspekter. Detta gör det svårt att fastställa subventioner för att främja energieffektiviseringsåtgärder.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. vii, 27
Serie
TRITA-STKL
Nationell ämneskategori
Miljöanalys och bygginformationsteknik
Forskningsämne
Energiteknik
Identifikatorer
urn:nbn:se:kth:diva-172982 (URN)978-91-7595-664-0 (ISBN)
Presentation
2015-09-18, Övningssal 25, Brinellvägen 23, KTH, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20150904

Tillgänglig från: 2015-09-04 Skapad: 2015-09-04 Senast uppdaterad: 2015-09-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Holmberg, Sture

Sök vidare i DiVA

Av författaren/redaktören
Gustafsson, MarcusHolmberg, Sture
Av organisationen
Installations- och energisystem
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 364 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf