Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning object, grasping and manipulation activities using hierarchical HMMs
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0003-2965-2953
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Autonomous Robots, ISSN 0929-5593, E-ISSN 1573-7527, Vol. 37, nr 3, 317-331 s.Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This article presents a probabilistic algorithm for representing and learning complex manipulation activities performed by humans in everyday life. The work builds on the multi-level Hierarchical Hidden Markov Model (HHMM) framework which allows decomposition of longer-term complex manipulation activities into layers of abstraction whereby the building blocks can be represented by simpler action modules called action primitives. This way, human task knowledge can be synthesised in a compact, effective representation suitable, for instance, to be subsequently transferred to a robot for imitation. The main contribution is the use of a robust framework capable of dealing with the uncertainty or incomplete data inherent to these activities, and the ability to represent behaviours at multiple levels of abstraction for enhanced task generalisation. Activity data from 3D video sequencing of human manipulation of different objects handled in everyday life is used for evaluation. A comparison with a mixed generative-discriminative hybrid model HHMM/SVM (support vector machine) is also presented to add rigour in highlighting the benefit of the proposed approach against comparable state of the art techniques.

Ort, förlag, år, upplaga, sidor
2014. Vol. 37, nr 3, 317-331 s.
Nyckelord [en]
Hierarchical Hidden Markov Model (HHMM), Action primitives, Grasping and manipulation, Human daily activities
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:kth:diva-150901DOI: 10.1007/s10514-014-9392-1ISI: 000340409000006Scopus ID: 2-s2.0-84905755829OAI: oai:DiVA.org:kth-150901DiVA: diva2:746939
Anmärkning

QC 20140915

Tillgänglig från: 2014-09-15 Skapad: 2014-09-11 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Kragic, Danica

Sök vidare i DiVA

Av författaren/redaktören
Kragic, DanicaEk, Carl Henrik
Av organisationen
Datorseende och robotik, CVAP
I samma tidskrift
Autonomous Robots
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 214 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf