Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A product formula for the TASEP on a ring
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).
2016 (Engelska)Ingår i: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 48, nr 2, s. 247-259Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

For a random permutation sampled from the stationary distributionof the TASEP on a ring, we show that, conditioned on the event that the rstentries are strictly larger than the last entries, the order of the rst entries isindependent of the order of the last entries. The proof uses multi-line queues asdened by Ferrari and Martin, and the theorem has an enumerative combinatorialinterpretation in that setting.As an application we prove a conjecture of Lam and Williams concerningSchubert factors of the stationary probability of certain states.Finally, we present a conjecture for the case where the small and large entriesare not separated.

Ort, förlag, år, upplaga, sidor
Wiley-Blackwell, 2016. Vol. 48, nr 2, s. 247-259
Nyckelord [en]
TASEP, exclusion process, multi-line queue, Markov chain
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-156858DOI: 10.1002/rsa.20595ISI: 000367624300002Scopus ID: 2-s2.0-84952987496OAI: oai:DiVA.org:kth-156858DiVA, id: diva2:768229
Anmärkning

QC 20160205

Tillgänglig från: 2014-12-03 Skapad: 2014-12-03 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
Ingår i avhandling
1. A Markov Process on Cyclic Words
Öppna denna publikation i ny flik eller fönster >>A Markov Process on Cyclic Words
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The TASEP (totally asymmetric simple exclusion process) studied here is a Markov chain on cyclic words over the alphabet{1,2,...,n} given by at each time step sorting an adjacent pair of letters chosen uniformly at random. For example, from the word 3124 one may go to 1324, 3124, 3124, 4123 by sorting the pair 31, 12, 24, or 43.

Two words have the sametype if they are permutations of each other. If we restrict TASEP to words of some particular type m we get an ergodic Markov chain whose stationary distribution we denote by ζm. Soζm (u) is the asymptotic proportion of time spent in the state u if the chain started in some word of type m. The distribution ζ is the main object of study in this thesis. This distribution turns out to have several remarkable properties, and alternative characterizations. It has previously been studied both from physical, combinatorial, and probabilitistic viewpoints.

In the first chapter we give an extended summary of known results and results in this thesis concerning ζ. The new results are described (and proved) in detail in Papers I - IV.

The new results in Papers I and II include an explicit formula for the value ofζat sorted words and a product formula for decomposable words. We also compute some correlation functions for ζ. In Paper III we study of a generalization of TASEP to Weyl groups. In Paper IV we study a certain scaling limit of ζ, finding several interesting patterns of which we prove some. We also study an inhomogenous version of TASEP, in which different particles get sorted at different rates, which generalizes the homogenous version in several aspects. In the first chapter we compute some correlation functions for ζ

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2014. s. vii, 35
Serie
TRITA-MAT-A ; 2014:12
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:kth:diva-156862 (URN)978-91-7595-357-1 (ISBN)
Disputation
2014-12-12, E3, Osquars backe 14, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20141204

Tillgänglig från: 2014-12-04 Skapad: 2014-12-03 Senast uppdaterad: 2015-08-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Aas, ErikSjöstrand, Jonas
Av organisationen
Matematik (Avd.)
I samma tidskrift
Random structures & algorithms (Print)
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 673 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf