Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bounds on Hilbert Functions and Betti Numbers of Veronese Modules
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.). (Algebraic Geometry)
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The thesis is a collection of four papers dealing with Hilbert functions and Betti numbers.In the first paper, we study the h-vectors of reduced zero-dimensional schemes in  . In particular we deal with the problem of findingthe possible h-vectors for the union of two sets of points of given h-vectors. To answer to this problem, we give two kinds of bounds on theh-vectors and we provide an algorithm that calculates many possibleh-vectors.In the second paper, we prove a generalization of Green’s Hyper-plane Restriction Theorem to the case of finitely generated modulesover the polynomial ring, providing an upper bound for the Hilbertfunction of the general linear restriction of a module M in a degree dby the corresponding Hilbert function of a lexicographic module.In the third paper, we study the minimal free resolution of theVeronese modules, , where  by giving a formula for the Betti numbers in terms of the reduced homology of the squarefree divisor complex. We prove that is Cohen-Macaulay if and only if k < d, and that its minimal resolutionis linear when k > d(n − 1) − n. We prove combinatorially that the resolution of  is pure. We provide a formula for the Hilbert seriesof the Veronese modules. As an application, we calculate the completeBetti diagrams of the Veronese rings  .In the fourth paper, we apply the same combinatorial techniques inthe study of the properties of pinched Veronese rings, in particular weshow when this ring is Cohen-Macaulay. We also study the canonicalmodule of the Veronese modules.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2014. , s. vii, 31
Serie
TRITA-MAT-A ; 2014:16
Nyckelord [en]
Hilbert function, Betti numbers, Veronese modules, Pinched veronese, h-vectors
Nationell ämneskategori
Algebra och logik Geometri
Forskningsämne
Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-158913ISBN: 978-91-7595-394-6 (tryckt)OAI: oai:DiVA.org:kth-158913DiVA, id: diva2:780001
Disputation
2015-02-04, F3, Lindstedtsvägen 26, KTH, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20150115

Tillgänglig från: 2015-01-15 Skapad: 2015-01-13 Senast uppdaterad: 2015-01-15Bibliografiskt granskad
Delarbeten
1. The h-vector of the union of two sets of points in the projective plane
Öppna denna publikation i ny flik eller fönster >>The h-vector of the union of two sets of points in the projective plane
2012 (Engelska)Ingår i: Le Matematiche, ISSN 2037-5298, E-ISSN 0373-3505, Vol. 67, nr 1Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Given two h-vectors, handh0, we study which are the possible h-vectors for the union of two disjoint sets of points in P2, respectively associated to h and h0and how they can be constructed. We will give some bounds for the resulting h-vector and we will show how to construct the minimal h-vector of the union among all possible ones.

Nyckelord
Union, Set, h-vector
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:kth:diva-133985 (URN)10.4418/2012.67.1.16 (DOI)
Anmärkning

QC 20131114

Tillgänglig från: 2013-11-14 Skapad: 2013-11-14 Senast uppdaterad: 2017-12-06Bibliografiskt granskad
2. Green’s Hyperplane Restriction Theorem: an extension to modules
Öppna denna publikation i ny flik eller fönster >>Green’s Hyperplane Restriction Theorem: an extension to modules
2015 (Engelska)Ingår i: Journal of Pure and Applied Algebra, ISSN 0022-4049, E-ISSN 1873-1376, Vol. 219, nr 8, s. 3506-3517Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, we prove a generalization of Green's Hyperplane RestrictionTheorem to the case of modules over the polynomial ring, providing in particularan upper bound for the Hilbert function of the general linear restrictionof a module M in a degree d by the corresponding Hilbert function of alexicographic module.

Nyckelord
Hilbert function, General linear restriction, Lexicographic modules
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:kth:diva-133986 (URN)10.1016/j.jpaa.2014.12.009 (DOI)000351979000025 ()2-s2.0-84925299702 (Scopus ID)
Anmärkning

Updated from manuscript to article.

QC 20150504

Tillgänglig från: 2013-11-14 Skapad: 2013-11-14 Senast uppdaterad: 2017-12-06Bibliografiskt granskad
3. Syzygies of Veronese modules
Öppna denna publikation i ny flik eller fönster >>Syzygies of Veronese modules
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nyckelord
betti number, veronese, simplicial complex
Nationell ämneskategori
Algebra och logik Geometri
Forskningsämne
Matematik
Identifikatorer
urn:nbn:se:kth:diva-158911 (URN)
Anmärkning

QS 2015

Tillgänglig från: 2015-01-13 Skapad: 2015-01-13 Senast uppdaterad: 2015-01-15Bibliografiskt granskad
4. Cohen-Macaulay Property of pinched Veronese Rings and Canonical Modules of Veronese  Modules
Öppna denna publikation i ny flik eller fönster >>Cohen-Macaulay Property of pinched Veronese Rings and Canonical Modules of Veronese  Modules
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

In this paper, we study the Betti numbers of pinched Veronese rings, by means of the reduced homology of the squarefree divisor complex. In particular, we study the Cohen-Macaulay property of these rings. Moreover, in the last section we compute the canonical modules of the Veronese modules.

Nyckelord
pinched veronese, cohen-macaulay, canonical module
Nationell ämneskategori
Algebra och logik
Identifikatorer
urn:nbn:se:kth:diva-158912 (URN)
Anmärkning

QS 2015

Tillgänglig från: 2015-01-13 Skapad: 2015-01-13 Senast uppdaterad: 2015-01-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Greco, Ornella
Av organisationen
Matematik (Avd.)
Algebra och logikGeometri

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 375 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf