Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. Norwegian University of Life Sciences, Norway; University of Copenhagen, Denmark .
2014 (Engelska)Ingår i: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 10, nr 11, s. e1003928-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(alpha) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic highfrequency 1/f(alpha) power laws with power-law exponents analytically identified as alpha(I)(infinity) =1/2 for the soma membrane current, alpha(p)(infinity) = 3/2 for the current-dipole moment, and alpha(V)(infinity) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(alpha) power laws with a wide range of values for the power-law exponent a may arise from a simple, linear partial differential equation.

Ort, förlag, år, upplaga, sidor
2014. Vol. 10, nr 11, s. e1003928-
Nationell ämneskategori
Bioinformatik (beräkningsbiologi) Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:kth:diva-158323DOI: 10.1371/journal.pcbi.1003928ISI: 000345454400019Scopus ID: 2-s2.0-84912058829OAI: oai:DiVA.org:kth-158323DiVA, id: diva2:783467
Anmärkning

QC 20150126

Tillgänglig från: 2015-01-26 Skapad: 2015-01-07 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Lindén, Henrik
Av organisationen
Beräkningsbiologi, CB
I samma tidskrift
PloS Computational Biology
Bioinformatik (beräkningsbiologi)Biokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 25 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf