Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Joint interface characterization method using frequency response measurements on assembled structures only: theoretical development and experimental validation on a workholding fixture for machining
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion. (MMS)ORCID-id: 0000-0002-4677-7005
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion.ORCID-id: 0000-0002-5960-2159
2015 (Engelska)Ingår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 77, nr 5-8, s. 1213-1228Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A computation model based on inverse receptance coupling method is presented in this paper aiming for obtaining the joint interface's stiffness and damping properties using frequency response functions measured on assembled structures only. In the model, it is emphasized that the joint stiffness and damping should be modeled with frequency dependency. The model's validity is checked both through finite element (FE) simulation and experimental analyses. In the FE simulation example, the computation model gives more accurate results with noise-free data. In the experimental example, where noise in the data is unavoidable, the computation model is explored further for its applicability in the real industrial environment. Results from applications of the computational model show that it is even capable of obtaining the joint interface stiffness and damping values over the structure's resonance frequency. A viable process of predicting behaviors of workpiece with receptance coupling method through identifying the joint interface properties is presented in the end of the paper. The applicability of this computation model and the factors that influence the accuracy of the model are discussed in the end of the paper.

Ort, förlag, år, upplaga, sidor
2015. Vol. 77, nr 5-8, s. 1213-1228
Nyckelord [en]
Joint interface, Joint stiffness, Joint damping, Frequency response functions, Receptance coupling method, Inverse receptance coupling method, Finite element method
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Forskningsämne
Industriell produktion; Maskinkonstruktion
Identifikatorer
URN: urn:nbn:se:kth:diva-163992DOI: 10.1007/s00170-014-6539-3ISI: 000350120000036Scopus ID: 2-s2.0-84925467019OAI: oai:DiVA.org:kth-163992DiVA, id: diva2:808010
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 260048
Anmärkning

QC 20150427

Tillgänglig från: 2015-04-27 Skapad: 2015-04-13 Senast uppdaterad: 2017-12-04Bibliografiskt granskad
Ingår i avhandling
1. High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
Öppna denna publikation i ny flik eller fönster >>High dynamic stiffness nano-structured composites for vibration control: A Study of applications in joint interfaces and machining systems
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship.

After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces.

Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces.

The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2015. s. ix, 71
Serie
TRITA-IIP, ISSN 1650-1888
Nyckelord
Vibration control, High dynamic stiffness, Metal matrix composite, Nano structures, Plasma enhanced chemical vapour deposition (PECVD), High power impulse magnetron sputtering (HiPIMS), Adiabatic, Machining, Regenerative tool chatter
Nationell ämneskategori
Nanoteknik Produktionsteknik, arbetsvetenskap och ergonomi Kompositmaterial och -teknik Fusion, plasma och rymdfysik Kemi Bearbetnings-, yt- och fogningsteknik Teknisk mekanik
Forskningsämne
Industriell produktion
Identifikatorer
urn:nbn:se:kth:diva-176869 (URN)978-91-7595-740-1 (ISBN)
Disputation
2015-12-01, M311, Brinellvägen 68, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 608800EU, FP7, Sjunde ramprogrammet, 260048VINNOVA, E!4329VINNOVA, HydroMod
Tillgänglig från: 2015-11-11 Skapad: 2015-11-10 Senast uppdaterad: 2015-11-11Bibliografiskt granskad
2. Joint Interface Effects on Machining System Vibration
Öppna denna publikation i ny flik eller fönster >>Joint Interface Effects on Machining System Vibration
2013 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Vibration problems are still the major constraint in modern machining processes that seek higher material removal rate, shorter process time, longer tool life and better product quality. Depending on the process, the weaker structure element can be the tool/tool holder, workpiece/fixture or both. When the tool/tool holder is the main source of vibration, the stability limit is determined in most cases by the ratio of length-to-diameter. Regenerative chatter is the most significant dynamic phenomenon generated through the interaction between machine tool and machining process. As a rule of thumb, the ratio between the tool’s overhang length and the tool’s diameter shouldn’t exceed 4 to maintain a stable machining process while using a conventional machining tool. While a longer tool overhang is needed for specific machining operations, vibration damping solutions are required to ensure a stable machining process. Vibration damping solutions include both active and passive damping solutions. In the passive damping solutions, damping medium such as viscoelastic material is used to transform the vibration strain energy into heat and thereby reduce vibration amplitude. For a typical cantilever tool, the highest oscillation displacement is near the anti-node regions of a vibration mode and the highest oscillation strain energy is concentrated at the node of a vibration mode. Viscoelastic materials have been successfully applied in these regions to exhibit their damping property. The node region of the 1st bending mode is at the joint interfaces where the cantilever tools are clamped. In this thesis, the general method that can be used to measure and characterize the joint interface stiffness and damping properties is developed and improved, joint interfaces’ importance at optimizing the dynamic stiffness of the joint interface is studied, and a novel advancing material that is designed to possess both high young’s modulus and high damping property is introduced. In the joint interface characterization model, a method that can measure the joint interface’s stiffness and damping over the full frequency range with only the assembled structure is presented. With the influence of a joint interface’s normal pressure on its stiffness and damping, an optimized joint interface normal pressure is selected for delivering a stable machining process against chatter with a boring bar setting at 6.5 times overhang length to diameter ratio in an internal turning process. The novel advancing material utilizes the carbon nano particles mixed in a metal matrix, and it can deliver both high damping property and high elastic stiffness to the mechanical structure.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2013. s. ix, 48
Serie
TRITA-IIP, ISSN 1650-1888 ; 13:05
Nyckelord
Joint Interface, Vibration, Damping, Chatter, Machining, Carbon NanoComposite, PECVD, HiPIMS
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
SRA - Produktion; Järnvägsgruppen - Ljud och vibrationer
Identifikatorer
urn:nbn:se:kth:diva-122392 (URN)978-91-7501-778-5 (ISBN)
Presentation
2013-05-24, Sal M311, Brinellvägen 68, KTH, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Projekt
PoPJIM, HydroMod, XPRES, NanoComfort
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, G62241EU, FP7, Sjunde ramprogrammet, G62240XPRES - Initiative for excellence in production researchEU, Europeiska forskningsrådet, E4329
Anmärkning

QC 20130521

Tillgänglig från: 2013-05-21 Skapad: 2013-05-20 Senast uppdaterad: 2015-11-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Fu, QilinRashid, Amir

Sök vidare i DiVA

Av författaren/redaktören
Fu, QilinRashid, Amir
Av organisationen
Industriell produktion
I samma tidskrift
The International Journal of Advanced Manufacturing Technology
Produktionsteknik, arbetsvetenskap och ergonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 179 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf