Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unveiling the charge migration mechanism in Na2O2: implications for sodium-air batteries
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. Uppsala University, Sweden .
2015 (Engelska)Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 17, nr 12, s. 8203-8209Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Metal-air batteries have become promising candidates for modern energy storage due to their high theoretical energy density in comparison to other storage devices. The lower overpotential of Na compared with Li makes Na-air batteries more efficient in terms of battery lifetime. Additionally, the abundance of Na over Li is another advantage for Na batteries compared to Li batteries. Na2O2 is one of the main products of sodium-air battery reactions. The efficiency of air cells is always related to the charge transport mechanisms in the formed product. To unveil these diffusion mechanisms in one of the main products of the cell reaction Na-O-2 we systematically investigate the mobility of charge carriers as well as the electronic structural properties of sodium peroxide. The framework of the density functional theory based on hybrid functional approach is used to study the mobility of charge carriers and intrinsic defects in Na2O2. Our calculations reveal that the formation of small electron and hole polarons is preferentially occurring over the delocalized state in the crystal structure of Na2O2. The migration of these small polarons displays activation energies of about 0.92 eV and 0.32 eV for the electron and hole polarons respectively, while the analysis of the charged sodium vacancy mobility reveals an activation energy of about 0.5 eV. These results suggest that the charge transport in sodium peroxide would mainly occur through the diffusion of hole polarons.

Ort, förlag, år, upplaga, sidor
2015. Vol. 17, nr 12, s. 8203-8209
Nationell ämneskategori
Biokemi och molekylärbiologi Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-165244DOI: 10.1039/c4cp05042hISI: 000351437500069PubMedID: 25732774Scopus ID: 2-s2.0-84924870536OAI: oai:DiVA.org:kth-165244DiVA, id: diva2:809578
Anmärkning

QC 20150504

Tillgänglig från: 2015-05-04 Skapad: 2015-04-24 Senast uppdaterad: 2017-12-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Chakraborty, Sudip

Sök vidare i DiVA

Av författaren/redaktören
Chakraborty, SudipAhuja, Rajeev
Av organisationen
Tillämpad materialfysik
I samma tidskrift
Physical Chemistry, Chemical Physics - PCCP
Biokemi och molekylärbiologiFysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 200 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf