Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CT scan range estimation using multiple body parts detection: let PACS learn the CT image content
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildteknik. Linköping University, Sweden; Sectra AB, Sweden.ORCID-id: 0000-0002-0442-3524
2016 (Engelska)Ingår i: International Journal of Computer Assisted Radiology and Surgery, ISSN 1861-6410, E-ISSN 1861-6429, Vol. 11, nr 2, s. 317-325Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Purpose: The aim of this study was to develop an efficient CT scan range estimation method that is based on the analysis of image data itself instead of metadata analysis. This makes it possible to quantitatively compare the scan range of two studies. Methods: In our study, 3D stacks are first projected to 2D coronal images via a ray casting-like process. Trained 2D body part classifiers are then used to recognize different body parts in the projected image. The detected candidate regions go into a structure grouping process to eliminate false-positive detections. Finally, the scale and position of the patient relative to the projected figure are estimated based on the detected body parts via a structural voting. The start and end lines of the CT scan are projected to a standard human figure. The position readout is normalized so that the bottom of the feet represents 0.0, and the top of the head is 1.0. Results: Classifiers for 18 body parts were trained using 184 CT scans. The final application was tested on 136 randomly selected heterogeneous CT scans. Ground truth was generated by asking two human observers to mark the start and end positions of each scan on the standard human figure. When compared with the human observers, the mean absolute error of the proposed method is 1.2 % (max: 3.5 %) and 1.6 % (max: 5.4 %) for the start and end positions, respectively. Conclusion: We proposed a scan range estimation method using multiple body parts detection and relative structure position analysis. In our preliminary tests, the proposed method delivered promising results.

Ort, förlag, år, upplaga, sidor
Springer, 2016. Vol. 11, nr 2, s. 317-325
Nyckelord [en]
Body parts detection, Image classification, Machine learning, Pictorial structures, Scan range estimation, Structural voting
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-175028DOI: 10.1007/s11548-015-1232-zISI: 000370160300015Scopus ID: 2-s2.0-84957960866OAI: oai:DiVA.org:kth-175028DiVA, id: diva2:876706
Anmärkning

QC 20151204. QC 20160319

Tillgänglig från: 2015-12-04 Skapad: 2015-10-09 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Wang, Chunliang

Sök vidare i DiVA

Av författaren/redaktören
Wang, Chunliang
Av organisationen
Medicinsk bildteknik
I samma tidskrift
International Journal of Computer Assisted Radiology and Surgery
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 52 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf