Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Maximal stochastic transport in the Lorenz equations
KTH, Centra, Nordic Institute for Theoretical Physics NORDITA.
2016 (Engelska)Ingår i: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 380, nr 1-2, s. 142-146Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh-Benard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.

Ort, förlag, år, upplaga, sidor
Elsevier, 2016. Vol. 380, nr 1-2, s. 142-146
Nyckelord [en]
Lorenz equations, Rayleigh-Benard convection, Heat transport, Stochastic dynamics, Upper bounds
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-180202DOI: 10.1016/j.physleta.2015.09.046ISI: 000365365300021Scopus ID: 2-s2.0-84946605564OAI: oai:DiVA.org:kth-180202DiVA, id: diva2:895937
Anmärkning

QC 20160120

Tillgänglig från: 2016-01-20 Skapad: 2016-01-08 Senast uppdaterad: 2017-11-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Wettlaufer, John S.
Av organisationen
Nordic Institute for Theoretical Physics NORDITA
I samma tidskrift
Physics Letters A
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 487 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf