Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Regularity of the free boundary in the biharmonic obstacle problem
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematik (Avd.).
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-195176OAI: oai:DiVA.org:kth-195176DiVA, id: diva2:1044279
Merknad

QC 20161116

Tilgjengelig fra: 2016-11-02 Laget: 2016-11-02 Sist oppdatert: 2016-11-16bibliografisk kontrollert
Inngår i avhandling
1. Regularity results in free boundary problems
Åpne denne publikasjonen i ny fane eller vindu >>Regularity results in free boundary problems
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis consists of three scientific papers, devoted to the regu-larity theory of free boundary problems. We use iteration arguments to derive the optimal regularity in the optimal switching problem, and to analyse the regularity of the free boundary in the biharmonic obstacle problem and in the double obstacle problem.In Paper A, we study the interior regularity of the solution to the optimal switching problem. We derive the optimal C1,1-regularity of the minimal solution under the assumption that the zero loop set is the closure of its interior.In Paper B, assuming that the solution to the biharmonic obstacle problem with a zero obstacle is suÿciently close-to the one-dimensional solution (xn)3+, we derive the C1,-regularity of the free boundary, under an additional assumption that the noncoincidence set is an NTA-domain.In Paper C we study the two-dimensional double obstacle problem with polynomial obstacles p1 p2, and observe that there is a new type of blow-ups that we call double-cone solutions. We investigate the existence of double-cone solutions depending on the coeÿcients of p1, p2, and show that if the solution to the double obstacle problem with obstacles p1 = −|x|2 and p2 = |x|2 is close to a double-cone solution, then the free boundary is a union of four C1,-graphs, pairwise crossing at the origin.

sted, utgiver, år, opplag, sider
KTH: KTH Royal Institute of Technology, 2016. s. 122
Serie
TRITA-MAT-A ; 2016-10
HSV kategori
Forskningsprogram
Matematik
Identifikatorer
urn:nbn:se:kth:diva-195178 (URN)
Disputas
2016-12-02, D3, Kungl Tekniska Högskolan, Lindstedtsvägen 5, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Merknad

QC 20161103

Tilgjengelig fra: 2016-11-03 Laget: 2016-11-02 Sist oppdatert: 2016-11-16bibliografisk kontrollert

Open Access i DiVA

fulltext(426 kB)64 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 426 kBChecksum SHA-512
dadd8b58a44af6ab68a9a9445cb7f1a933474eaff494a171f911b7218b3a5f848b99f8b7428ad300b83e1d350fce4820b29032b82dc27b548afad0b472ec626c
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Aleksanyan, Gohar
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 64 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 258 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf