Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sobolev and max norm error estimates for Gaussian beam superpositions
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.). KTH, Centra, SeRC - Swedish e-Science Research Centre.ORCID-id: 0000-0002-6321-8619
2016 (engelsk)Inngår i: Communications in Mathematical Sciences, ISSN 1539-6746, E-ISSN 1945-0796, Vol. 14, nr 7, s. 2037-2072Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This work is concerned with the accuracy of Gaussian beam superpositions, which are asymptotically valid high frequency solutions to linear hyperbolic partial differential equations and the Schrödinger equation. We derive Sobolev and max norms estimates for the difference between an exact solution and the corresponding Gaussian beam approximation, in terms of the short wavelength e. The estimates are performed for the scalar wave equation and the Schrödinger equation. Our result demonstrates that a Gaussian beam superposition with kth order beams converges to the exact solution as O(εk/2-s) in order s Sobolev norms. This result is valid in any number of spatial dimensions and it is unaffected by the presence of caustics in the solution. In max norm, we show that away from caustics the convergence rate is O(ε⌈k/2⌉) and away from the essential support of the solution, the convergence is spectral in ε. However, in the neighborhood of a caustic point we are only able to show the slower, and dimensional dependent, rate O(ε(k-n)/2) in n spatial dimensions.

sted, utgiver, år, opplag, sider
International Press of Boston , 2016. Vol. 14, nr 7, s. 2037-2072
Emneord [en]
Error estimates, Gaussian beams, High-frequency wave propagation, Max norm, Sobolev norm
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-195136DOI: 10.4310/CMS.2016.v14.n7.a12ISI: 000385990500012Scopus ID: 2-s2.0-84990954990OAI: oai:DiVA.org:kth-195136DiVA, id: diva2:1044832
Forskningsfinansiär
Swedish e‐Science Research Center
Merknad

QC 20161107

Tilgjengelig fra: 2016-11-07 Laget: 2016-11-02 Sist oppdatert: 2017-11-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Runborg, Olof

Søk i DiVA

Av forfatter/redaktør
Runborg, Olof
Av organisasjonen
I samme tidsskrift
Communications in Mathematical Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 38 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf