Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Role of thermal and electrical relaxations for the long-term conduction current in polyethylene
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
2016 (English)In: Proceedings of the 2016 IEEE International Conference on Dielectrics, ICD 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 1106-1109Conference paper, Published paper (Refereed)
Abstract [en]

The characterization of the electrical conduction behavior of polymeric insulating material is a challenging task. Typical reasons are the underlying complexity of the physical processes, the smallness of the current, and the long relaxation times. Moreover, even if the external conditions like applied voltage and temperature are time-constant, often a steady-state direct current (DC) is not established during the measurement time, which may last up from hours to months. This work reports on DC current measurements on 1 mm thick press molded LDPE and XLPE samples. The results show that the conductance is slowly decaying sub-linearly with time, I∼tp, with 0 <-p < 1, p often around-0.5. In certain cases an intermediate current maximum is observed. There is strong indication that the decay of the effective conductivity is due a thermal process rather than to an electrical process.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2016. p. 1106-1109
Keywords [en]
Conductivity, cross-linked polyethylene insulation, HVDC insulation, power cable insulation, Electric conductivity, Insulating materials, Insulation, Cross linked polyethylene insulation, DC current measurement, Effective conductivity, Electrical conduction, Electrical relaxations, External conditions, Polymeric insulating materials, Polyethylenes
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-194952DOI: 10.1109/ICD.2016.7547812ISI: 000389639800256Scopus ID: 2-s2.0-84988443740ISBN: 9781509028023 (print)OAI: oai:DiVA.org:kth-194952DiVA, id: diva2:1049071
Conference
1st IEEE International Conference on Dielectrics, ICD 2016, 3 July 2016 through 7 July 2016
Note

QC 20161123

Available from: 2016-11-23 Created: 2016-11-01 Last updated: 2018-05-22Bibliographically approved
In thesis
1. Characterization of Conduction and Polarization Properties of HVDC Cable XLPE Insulation Materials
Open this publication in new window or tab >>Characterization of Conduction and Polarization Properties of HVDC Cable XLPE Insulation Materials
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High voltage direct current (HVDC) cables with extruded insulation system were introduced in 1998. Since then this technology has been growing rapidly with many installations that are today operational at voltages up to 320 kV. With fast developments during the last few years, extruded DC cable systems for operation voltages as high as 640 kV are now commercially available.

Due to the importance of DC conductivity in the distribution of electrical field across the cable insulation, a good understanding of the DC conduction physics is of key importance to the design of robust HVDC cables. Currently, crosslinked polyethylene (XLPE) is the dominating material used in the insulation system of extruded DC cables. Since XLPE includes peroxide decomposition products (PDP), understanding their role on conduction behavior of the insulation system has been of great interest. The PDP and other chemical species can move in the system through diffusion which makes the characterization of cable insulation more challenging. Besides, like other semi-crystalline polymers, morphology of the XLPE evolves with temperature and over time. These changes in the material pose challenges to their electrical characterization by requiring stringent control of parameters during preparation, storage and measurement.

In this work, different electrical characterization techniques relevant to polymeric insulation materials are discussed highlighting their applications and limitations. A set of considerations during preparation, storage and measurement of polymeric samples is listed and implemented in the studies. The design and performance of a high voltage DC conductivity measurement setup is evaluated.

Thick low density polyethylene (LDPE) and XLPE press molded plaque samples together with plaque samples extracted from cable insulation are prepared and studied using the high voltage DC conductivity measurement setup. Conductivity measurements are done both under static and dynamic temperature programs. Different preparations and test programs are used and the results are analyzed and compared.

Investigations show that the type of protective press film used during press molding of samples can strongly influence the results and using polyethylene terephthalate (PET) film appears to lead to the higher measured conductivity levels. Studies with dynamic temperature program reveal a non-monotonic temperature dependence of apparent DC conductivity of samples with certain

preparation which to the author’s best of knowledge has not been previously

reported in the literature.

Studies on XLPE and LDPE plaque samples with different heat-treatments show that the behavior of conductivity during thermal dynamics depends on the type of the press film. Upon degassing, samples pressed with PET film show a decline of conductivity at all temperatures and a reduction of the non-monotonic behavior. Based on the results from the experiments, a set of hypotheses as potential explanation of this behavior is put forward and discussed.

Abstract [sv]

Extruderade likspännings (DC) kablar infördes 1998. Sedan dess ha likspännings (DC) kabeltekniken utvecklats snabbt och har lett till många existerande kabelsysteminstallationer med driftspänningar på upp till 320 kV och typprovade extruderade DC kabelsystem har nått driftspänningar på upp till 640 kV.

Den elektriska ledningsförmågan påverkan på den elektrisk fältfördelning i isolationsmaterial vid DC, kräver en god förståelse av hur den elektriska konduktiviteten påverkas av fältstyrka, temperatur och en mängd materialparametrar relaterade till polymerernas morfologi och kemi. Idag är tvärbunden polyeten (PEX) det dominerande material som används i isolationssystem för extruderade DC-kablar. PEX innehåller tvärbindningsrestgaser och det har lett till stort intresse för bättre förståelse av tvärbindningsrestgasers påverkan på materialets elektriska egenskaper. Restgaserna och andra kemikalier är flyktiga och kan röra sig i systemet genom diffusion som gör karakterisering av kabelisoleringen mer utmanande. Dessutom, liksom andra semi-kristallina polymerer, ändras PEX materialets morfologi med temperatur över tiden. Med tanke på att materialet kan ändras under provpreparering, lagring och även vid mätning, så måste samtliga steg ovan väljas mycket försiktigt.

I detta arbete, diskuteras olika karakteriserings tekniker för polymera isolationsmaterial och deras möjligheter och begränsningar. Viktiga aspekter för provpreparering, lagring och mätning är listade till vilka tagits hänsyn till under detta arbete. Design och prestanda av mätuppställningen för DC ledningsförmåga har utvärderats.

Tjocka plattprover av pressad LDPE och PEX samt plattor ursvarvade från kommersiellt tillverkade högspänningskablar preparerades och studier genomfördes på deras ledningsförmåga under högspänning DC. Mätning av ledningsförmåga genomfördes både med konstant och med varierande temperatur enligt specifika program. Olika provprepareringar och provprogrammen användes och resultaten analyserades och jämfördes.

Resultaten visar att typ av pressfilm som använts under provpreparering kan ha en stor betydelse för resultaten och användning av PET filmer leder till högsta ledningsförmåga. Studier med varierande temperatur program hos PEX och LDPE

plattor med visa prepareringar, visar ett icke monotont beroende av DC ledningsförmåga på temperatur som tidigare inte rapporterats i litteraturen.

Studier på PEX och LDPE plattor med olika värmebehandling visar att beteenden beror på typ av press film som används under provpreparering. Efter avgasning, uppvisar prover pressade med PET film en minskning i ledningsförmåga i samtliga temperaturer och en minskning av det icke monotona temperatur beteendet. Baserade på experimentresultaten har ett antal hypoteser som förklaring av observationer tagit fram och diskuterats.

Place, publisher, year, edition, pages
stockholm: KTH Royal Institute of Technology, 2018. p. 89
Series
TRITA-EECS-AVL ; 2018:45
Keywords
HVDC insulation, power cable insulation, cross-linked polyethylene insulation, conductivity, dielectric losses, space charge
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-228220 (URN)978-91-7729-817-5 (ISBN)
Public defence
2018-06-08, Sal Q2, Osquldas Väg 10, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20180521

Available from: 2018-05-22 Created: 2018-05-18 Last updated: 2018-05-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Edin, Hans Ezz
By organisation
Electromagnetic Engineering
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf