Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Temporal scale selection in time-causal scale space
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). (Computational Brain Science Lab)ORCID-id: 0000-0002-9081-2170
2017 (engelsk)Inngår i: Journal of Mathematical Imaging and Vision, ISSN 0924-9907, E-ISSN 1573-7683, Vol. 58, nr 1, s. 57-101Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

When designing and developing scale selection mechanisms for generating hypotheses about characteristic scales in signals, it is essential that the selected scale levels reflect the extent of the underlying structures in the signal.

This paper presents a theory and in-depth theoretical analysis about the scale selection properties of methods for automatically selecting local temporal scales in time-dependent signals based on local extrema over temporal scales of scale-normalized temporal derivative responses. Specifically, this paper develops a novel theoretical framework for performing such temporal scale selection over a time-causal and time-recursive temporal domain as is necessary when processing continuous video or audio streams in real time or when modelling biological perception.

For a recently developed time-causal and time-recursive scale-space concept defined by convolution with a scale-invariant limit kernel, we show that it is possible to transfer a large number of the desirable scale selection properties that hold for the Gaussian scale-space concept over a non-causal temporal domain to this temporal scale-space concept over a truly time-causal domain. Specifically, we show that for this temporal scale-space concept, it is possible to achieve true temporal scale invariance although the temporal scale levels have to be discrete, which is a novel theoretical construction.

The analysis starts from a detailed comparison of different temporal scale-space concepts and their relative advantages and disadvantages, leading the focus to a class of recently extended time-causal and time-recursive temporal scale-space concepts based on first-order integrators or equivalently truncated exponential kernels coupled in cascade. Specifically, by the discrete nature of the temporal scale levels in this class of time-causal scale-space concepts, we study two special cases of distributing the intermediate temporal scale levels, by using either a uniform distribution in terms of the variance of the composed temporal scale-space kernel or a logarithmic distribution.

In the case of a uniform distribution of the temporal scale levels, we show that scale selection based on local extrema of scale-normalized derivatives over temporal scales makes it possible to estimate the temporal duration of sparse local features defined in terms of temporal extrema of first- or second-order temporal derivative responses. For dense features modelled as a sine wave, the lack of temporal scale invariance does, however, constitute a major limitation for handling dense temporal structures of different temporal duration in a uniform manner.

In the case of a logarithmic distribution of the temporal scale levels, specifically taken to the limit of a time-causal limit kernel with an infinitely dense distribution of the temporal scale levels towards zero temporal scale, we show that it is possible to achieve true temporal scale invariance to handle dense features modelled as a sine wave in a uniform manner over different temporal durations of the temporal structures as well to achieve more general temporal scale invariance for any signal over any temporal scaling transformation with a temporal scaling factor that is an integer power of the distribution parameter of the time-causal limit kernel.

It is shown how these temporal scale selection properties developed for a pure temporal domain carry over to feature detectors defined over time-causal spatio-temporal and spectro-temporal domains.

sted, utgiver, år, opplag, sider
Springer, 2017. Vol. 58, nr 1, s. 57-101
Emneord [en]
Scale space, Scale, Scale selection, Temporal, Spatio-temporal, Scale invariance, Differential invariant, Feature detection, Video analysis, Computer vision
HSV kategori
Forskningsprogram
Datalogi; Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-196844DOI: 10.1007/s10851-016-0691-3ISI: 000399018900005OAI: oai:DiVA.org:kth-196844DiVA, id: diva2:1049197
Prosjekter
Scale-space theory for invariant and covariant visual receptive fieldsTime-causal receptive fields for computer vision and computational modelling of biological vision
Forskningsfinansiär
Swedish Research Council, 2014-4083Stiftelsen Olle Engkvist Byggmästare, 2015/465
Merknad

QC 20170111

Tilgjengelig fra: 2016-11-23 Laget: 2016-11-23 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltext(4296 kB)126 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4296 kBChecksum SHA-512
879badc507ab2e6b3cade2be98cc69b1bd088ce69f176ef6f176ad31678fb55a410ed8dfba84cfe06c76c74053da1e1972bee04d5db8e998b8e9d62a88f36304
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstAt author's home page

Søk i DiVA

Av forfatter/redaktør
Lindeberg, Tony
Av organisasjonen
I samme tidsskrift
Journal of Mathematical Imaging and Vision

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 126 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1345 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf