Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gossip-based behavioral group identification in decentralized OSNs
KTH. University of Insubria, Italy.
KTH. University of Insubria, Italy.
KTH. University of Insubria, Italy.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS. University of Insubria, Italy.ORCID-id: 0000-0003-4516-7317
2016 (Engelska)Ingår i: 12th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2016, Springer, 2016, s. 676-691Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

DOSNs are distributed systems providing social networking services that become extremely popular in recent years. In DOSNs, the aim is to give the users control over their data and keeping data locally to enhance privacy. Therefore, identifying behavioral groups of users that share the same behavioral patterns in decentralized OSNs is challenging. In the fully distributed social graph, each user has only one feature vector and these vectors can not move to any central storage or other users in a raw form duo to privacy issues. We use a gossip learning approach where all users are involved with their local estimation of the clustering model and improve their estimations and finally converge to a final clustering model available for all users. In order to evaluate our approach, we implement our algorithm and test it in a real Facebook graph.

Ort, förlag, år, upplaga, sidor
Springer, 2016. s. 676-691
Nyckelord [en]
Behavioral group identification, Decentralized Online Social Network (DOSN), Gossip learning, Newscast EM, Artificial intelligence, Cluster analysis, Data mining, Digital storage, Learning systems, Pattern recognition, Behavioral patterns, Decentralized OSNs, Distributed systems, Group identification, On-line social networks, Social networking services, Social networking (online)
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-195516DOI: 10.1007/978-3-319-41920-6_52ISI: 000386510300052Scopus ID: 2-s2.0-84979017494ISBN: 9783319419190 (tryckt)OAI: oai:DiVA.org:kth-195516DiVA, id: diva2:1049701
Konferens
16 July 2016 through 21 July 2016
Anmärkning

QC 20161125

Tillgänglig från: 2016-11-25 Skapad: 2016-11-03 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Girdzijauskas, Sarunas

Sök vidare i DiVA

Av författaren/redaktören
Ferrari, ElenaGirdzijauskas, Sarunas
Av organisationen
KTHProgramvaruteknik och Datorsystem, SCS
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 15 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf