Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reduced particle settling speed in turbulence
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0003-0418-7864
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0002-9172-6311
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0002-4346-4732
2016 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 808, p. 153-167Article in journal (Refereed) Published
Abstract [en]

We study the settling of finite-size rigid spheres in sustained homogeneous isotropic turbulence (1111) by direct numerical simulations using an immersed boundary method to account for the dispersed solid phase. We study semi-dilute suspensions at different Galileo numbers, Ga. The Galileo number is the ratio between buoyancy and viscous forces, and is here varied via the solid-to-fluid density ratio rho(p)/rho(f), The focus is on particles that are slightly heavier than the fluid. We find that in HIT, the mean settling speed is less than that in quiescent fluid; in particular, it reduces by 6 %-60 % with respect to the terminal velocity of an isolated sphere in quiescent fluid as the ratio between the latter and the turbulent velocity fluctuations it is decreased. Analysing the fluid particle relative motion, we find that the mean settling speed is progressively reduced while reducing rho(p)/rho(f) due to the increase of the vertical drag induced by the particle cross-flow velocity. Unsteady effects contribute to the mean overall drag by about 6%-10%. The probability density functions of particle velocities and accelerations reveal that these are closely related to the features of the turbulent flow. The particle mean-square displacement in the settling direction is found to be similar for all Ga if time is scaled by (2a)/u' (where 2a is the particle diameter and a is the turbulence velocity root mean square).

Place, publisher, year, edition, pages
Cambridge University Press, 2016. Vol. 808, p. 153-167
Keywords [en]
multiphase and particle-laden flows, particle/fluid flow, suspensions
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-198953DOI: 10.1017/jfm.2016.648ISI: 000387140500010Scopus ID: 2-s2.0-84992747372OAI: oai:DiVA.org:kth-198953DiVA, id: diva2:1065105
Funder
Swedish e‐Science Research CenterEU, European Research Council, ERC-2013-CoG-616186Swedish Research Council
Note

QC 20170113

Available from: 2017-01-13 Created: 2016-12-22 Last updated: 2017-11-29Bibliographically approved
In thesis
1. Suspensions of finite-size rigid particles in laminar and turbulent flows
Open this publication in new window or tab >>Suspensions of finite-size rigid particles in laminar and turbulent flows
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Dispersed multiphase flows occur in many biological, engineering and geophysical applications. Understanding the behavior of suspensions is a difficult task. In the present work, we numerically study the behavior of suspensions of finite-size rigid particles in different flows. Firstly, the sedimentation of spherical particles larger than the Taylor microscale in sustained homogeneous isotropic turbulence and quiescent fluid is investigated. The results show that the mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. We also investigate the settling in quiescent fluid of oblate particles. We find that at low volume fractions the mean settling speed of the suspension is substantially larger than the terminal speed of an isolated oblate. Suspensions of finite-size spheres are also studied in turbulent channel flow. First, we change the solid volume and mass fractions, and the solid-to-fluid density ratio in an idealized scenario where gravity is neglected. Then we investigate the effects of polydispersity. It is found that the statistics are substantially altered by changes in volume fraction. We then consider suspensions of solid spheres in turbulent duct flows. We see that particles accumulate mostly at the corners or at the core depending on the volume fraction. Secondary motions are enhanced by increasing the volume fraction, until excluded volume effects are so strong that the turbulence activity is reduced. The inertial migration of spheres in laminar square duct flows is also investigated. We consider semi-dilute suspensions at different bulk Reynolds numbers and duct-to-particle size ratios. The highest particle concentration is found around the focusing points, except at very large volume fractions. Finally we study the rheology of confined dense suspensions of spheres in simple shear flow. We focus on the weakly inertial regime and show that the effective viscosity varies non-monotonically with increasing confinement.

Place, publisher, year, edition, pages
Kungliga Tekniska högskolan, 2017
Series
TRITA-MEK, ISSN 0348-467X
Keywords
Suspensions, complex fluids, sedimentation, rheology, turbulence
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:kth:diva-217812 (URN)978-91-7729-607-2 (ISBN)
Public defence
2017-12-15, D3, Lindstedtsvägen 5, Stockholm, 10:15 (English)
Opponent
Supervisors
Funder
EU, European Research Council, ERC-2013-CoG-616186, TRITOS
Note

QC 20171117

Available from: 2017-11-17 Created: 2017-11-16 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Fornari, WalterSardina, GaetanoBrandt, Luca

Search in DiVA

By author/editor
Fornari, WalterSardina, GaetanoBrandt, Luca
By organisation
MechanicsLinné Flow Center, FLOWSeRC - Swedish e-Science Research Centre
In the same journal
Journal of Fluid Mechanics
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 649 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf