Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of Human CD133+Cells in Biocompatible Poly(l-lactic acid) Electrospun Nano-Fiber Scaffolds
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
KTH, School of Biotechnology (BIO), Industrial Biotechnology.ORCID iD: 0000-0002-0841-8845
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
Show others and affiliations
2016 (English)In: Journal of Biomaterials and Tissue Engineering, ISSN 2157-9083, E-ISSN 2157-9091, Vol. 6, no 12, p. 959-966Article in journal (Refereed) Published
Abstract [en]

CD133+ cells are potential myogenic progenitors for skeletal muscle regeneration to treat muscular dystrophies. The proliferation of human CD133+ stem cells was studied for 14 days in 3D biomimetic electrospun poly-L-lactic acid (PLLA) nano-fiber scaffolds. Additionally, the myogenic differentiation of the cells was studied during the last 7 days of the culture period. The cells were homogeneously distributed in the 3D scaffolds while colony formation and myotube formation occurred in 2D. After a lag phase due to lower initial cell attachment and an adaptation period, the cell growth rate in 3D was comparable to 2D after 7 and 14 days of culture. The expression of the stem cell (SC) marker PAX7 was 1.5-fold higher in 3D than 2D while the differentiation markers MyoG, Desmin and MyoD were only slightly changed (or remain unchanged) in 3D but strongly increased in 2D (12.6, 3.9, and 7.9-fold), and the myotube formation observed in 2D was absent in 3D. The marker expression during proliferation and differentiation, together with the absence of myotubes in 3D, indicates a better maintenance of stemness in 3D PLLA and stronger tendency for spontaneous differentiation in 2D culture. This makes 3D PLLA a promising biomaterial for the expansion of functional CD133+ cells.

Place, publisher, year, edition, pages
American Scientific Publishers, 2016. Vol. 6, no 12, p. 959-966
Keywords [en]
Myogenic Progenitor Cell, CD133+Cells, Myogenic Differentiation, 3D Cell Culturing, Electrospun Biodegradable Nano-Fiber Scaffold
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-198952DOI: 10.1166/jbt.2016.1531ISI: 000387148500005Scopus ID: 2-s2.0-84998636398OAI: oai:DiVA.org:kth-198952DiVA, id: diva2:1065112
Funder
EU, FP7, Seventh Framework Programme
Note

QC 20170113

Available from: 2017-01-13 Created: 2016-12-22 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Gillner, KarinZhang, YeÅstrand, CarolinaShokri, AtefehChotteau, Véronique

Search in DiVA

By author/editor
Al-Khalili, LubnaGillner, KarinZhang, YeÅstrand, CarolinaShokri, AtefehChotteau, Véronique
By organisation
Industrial Biotechnology
In the same journal
Journal of Biomaterials and Tissue Engineering
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 375 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf