Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A 96.4 dB High-Pass Delta-Sigma Modulator with Dynamic Biasing and Tree-Structured DEM
KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.ORCID-id: 0000-0003-3802-7834
2016 (Engelska)Ingår i: 2016 14TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), Vancouver, Canada: IEEE, 2016, artikel-id 7604762Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a switched-capacitor high-pass delta-sigma modulator that can directly convert a chopper modulated signal to the digital domain. Low power consumption is achieved by employing inverter-based amplifiers and dynamic biasing in the first amplifier with relaxed slew-rate requirements as a result of the multi-bit quantization. The mismatch errors in the switched-capacitor DAC are first-order noise shaped by a tree-structured dynamic element matching encoder. Schematic level simulations show that the high-pass modulator achieves a peak SNDR of 96.4 dB and a SFDR of 101 dBc over a bandwidth of 300 Hz. The total estimated power consumption of the modulator is 19.56 mu W leading to a figure-of-merit of 0.6 pJ/conv.

Ort, förlag, år, upplaga, sidor
Vancouver, Canada: IEEE, 2016. artikel-id 7604762
Serie
IEEE International New Circuits and Systems Conference
Nyckelord [en]
delta-sigma, ADC, modulator, switched-capacitor, DEM, dynamic, element, matching
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Elektro- och systemteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-198993DOI: 10.1109/NEWCAS.2016.7604762ISI: 000386900400028Scopus ID: 2-s2.0-84999014708ISBN: 978-1-4673-8900-6 (tryckt)OAI: oai:DiVA.org:kth-198993DiVA, id: diva2:1065726
Konferens
14th IEEE International New Circuits and Systems Conference (NEWCAS), JUN 26-29, 2016, Vancouver, CANADA
Forskningsfinansiär
Vetenskapsrådet
Anmärkning

QC 20170116

Tillgänglig från: 2017-01-16 Skapad: 2016-12-22 Senast uppdaterad: 2019-04-12Bibliografiskt granskad
Ingår i avhandling
1. Circuit Design Techniques for Implantable Closed-Loop Neural Interfaces
Öppna denna publikation i ny flik eller fönster >>Circuit Design Techniques for Implantable Closed-Loop Neural Interfaces
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Implantable neural interfaces are microelectronic systems, which have the potential to enable a wide range of applications, such as diagnosis and treatment of neurological disorders. These applications depend on neural interfaces to accurately record electrical activity from the surface of the brain, referred to as electrocorticography (ECoG), and provide controlled electrical stimulation as feedback. Since the electrical activity in the brain is caused by ionic currents in neurons, the bridge between living tissue and inorganic electronics is achieved via microelectrode arrays. The conversion of the ionic charge into freely moving electrons creates a built-in electrode potential that is several orders of magnitude larger than the ECoG signal, which increases the dynamic range, resolution, and power consumption requirements of neural interfaces. Also, the small surface area of microelectrodes implies a high-impedance contact, which can attenuate the ECoG signal. Moreover, the applied electrical stimulation can also interfere with the recording and ultimately cause irreversible damages to the electrodes or change their impedance. This thesis is devoted to resolving the challenges of high-resolution recording and monitoring the electrode impedance in implantable neural interfaces.

The first part of this thesis investigates the state-of-the-art neural interfaces for ECoG and identifies their limitations. As a result of the investigation, a high-resolution ADC is proposed and implemented based on a ΔΣ modulator. In order to enhance performance, dynamic biasing and area-efficient switched-capacitor circuits were proposed. The ΔΣ modulator is combined with the analog front-end to provide a complete readout solution for high-resolution ECoG recording. The corresponding chip prototype was fabricated in a 180 nm CMOS process, and the measurement results showed a 14-ENOB over a 300-Hz bandwidth while dissipating 54-μW.

The second part of this thesis expands upon the well-known methods for impedance measurements and proposes an alternative digital method for monitoring the electrode-tissue interface impedance. The proposed method is based on the system identification technique from adaptive digital filtering, and it is compatible with existing circuitry for neural stimulation. The method is simple to implement and performs wide-band measurements. The system identification was first verified through behavioral simulations and then tested with a board-level prototype in order to validate the functionality under real conditions. The measurement results showed successful identification of the electrode-electrolyte and electrode-skin impedance magnitudes.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2019. s. 72
Serie
TRITA-EECS-AVL ; 2019:33
Nyckelord
Neural interface, ECoG, high-resolution, ADC, recording, delta-sigma modulator, system identification, impedance measurements
Nationell ämneskategori
Annan elektroteknik och elektronik
Forskningsämne
Informations- och kommunikationsteknik
Identifikatorer
urn:nbn:se:kth:diva-249435 (URN)978-91-7873-151-0 (ISBN)
Disputation
2019-05-17, Ka-Sal B (Sal Peter Weissglas), Kistagången 16,, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
VetenskapsrådetStiftelsen för strategisk forskning (SSF)
Anmärkning

QC 20190412

Tillgänglig från: 2019-04-12 Skapad: 2019-04-12 Senast uppdaterad: 2019-04-12Bibliografiskt granskad

Open Access i DiVA

fulltext(1860 kB)134 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1860 kBChecksumma SHA-512
119c1e92ea771b0fc2d812676acd6c64c71d63cd38a66c7cb049550705c777d9661e4eda6838fb9ef00d7c54df36f02d0ca23d63583b799122f67ba75250d83b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Ivanisevic, NikolaRodriguez, SaulRusu, Ana

Sök vidare i DiVA

Av författaren/redaktören
Ivanisevic, NikolaRodriguez, SaulRusu, Ana
Av organisationen
Integrerade komponenter och kretsar
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 134 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 323 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf