Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
OnlineElastMan: Self-Trained Proactive Elasticity Manager for Cloud-Based Storage Services
KTH, Skolan för informations- och kommunikationsteknik (ICT).
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.
2016 (engelsk)Inngår i: 2016 INTERNATIONAL CONFERENCE ON CLOUD AND AUTONOMIC COMPUTING (ICCAC), Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 50-59Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The pay-as-you-go pricing model and the illusion of unlimited resources in the Cloud initiate the idea to provision services elastically. Elastic provisioning of services allocates/deallocates resources dynamically in response to the changes of the workload. It minimizes the service provisioning cost while maintaining the desired service level objectives (SLOs). Model-predictive control is often used in building such elasticity controllers that dynamically provision resources. However, they need to be trained, either online or offline, before making accurate scaling decisions. The training process involves tedious and significant amount of work as well as some expertise, especially when the model has many dimensions and the training granularity is fine, which is proved to be essential in order to build an accurate elasticity controller. In this paper, we present OnlineElastMan, which is a self-trained proactive elasticity manager for cloud-based storage services. It automatically trains and evolves itself while serving the workload. Experiments using OnlineElastMan with Cassandra indicate that OnlineElastMan continuously improves its provision accuracy, i.e., minimizing provisioning cost and SLO violations, under various workload patterns.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2016. s. 50-59
Emneord [en]
Elasticity Controller, Cloud Storage, Workload prediction, SLO, Online Training, Time series analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-199801DOI: 10.1109/ICCAC.2016.11ISI: 000390252000006ISBN: 978-1-5090-3536-6 (tryckt)OAI: oai:DiVA.org:kth-199801DiVA, id: diva2:1066763
Konferanse
IEEE International Conference on Cloud and Autonomic Computing (ICCAC), SEP 12-16, 2016, Augsburg, GERMANY
Merknad

QC 20170119

Tilgjengelig fra: 2017-01-19 Laget: 2017-01-16 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Vlassov, Vladimir

Søk i DiVA

Av forfatter/redaktør
Liu, YingGureya, DaharewaVlassov, Vladimir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 19 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf