Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Trust And Privacy Correlations in Social Networks: A Deep Learning Framework
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-7786-9551
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-4722-0823
2016 (engelsk)Inngår i: PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, IEEE conference proceedings, 2016, s. 203-206Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Online Social Networks (OSNs) remain the focal point of Internet usage. Since the beginning, networking sites tried best to have right privacy mechanisms in place for users, enabling them to share the right content with the right audience. With all these efforts, privacy customizations remain hard for users across the sites. Existing research that address this problem mainly focus on semi-supervised strategies that introduce extra complexity by requiring the user to manually specify initial privacy preferences for their friends. In this work, we suggest an adaptive solution that can dynamically generate privacy labels for users in OSNs. To this end, we introduce a deep reinforcement learning framework that targets two key problems in OSNs like Facebook: the exposure of users' interactions through the network to less trusted direct friends, and the possibility of propagating user updates through direct friends' interactions to indirect friends. By implementing this framework, we aim at understanding how social trust and privacy could be correlated, specifically in a dynamic fashion. We report the ranked dependence between the generated privacy labels and the estimated user trust values, which indicate the ability of the framework to identify the highly trusted users and share with them higher percentages of data.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2016. s. 203-206
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-200264DOI: 10.1109/ASONAM.2016.7752236ISI: 000390760100031Scopus ID: 2-s2.0-85006765626ISBN: 978-1-5090-2846-7 (tryckt)OAI: oai:DiVA.org:kth-200264DiVA, id: diva2:1069753
Konferanse
8th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), AUG 18-21, 2016, San Francisco, CA
Merknad

QC 20170130

Tilgjengelig fra: 2017-01-30 Laget: 2017-01-23 Sist oppdatert: 2020-03-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopushttp://asonam.cpsc.ucalgary.ca/2016/CFP.php

Personposter BETA

Matskin, Mihhail

Søk i DiVA

Av forfatter/redaktør
Jaradat, ShathaDokoohaki, NimaMatskin, Mihhail
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 86 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf