Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Trust And Privacy Correlations in Social Networks: A Deep Learning Framework
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-7786-9551
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.
KTH, Skolan för informations- och kommunikationsteknik (ICT), Programvaruteknik och Datorsystem, SCS.ORCID-id: 0000-0002-4722-0823
2016 (Engelska)Ingår i: PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, IEEE conference proceedings, 2016, s. 203-206Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Online Social Networks (OSNs) remain the focal point of Internet usage. Since the beginning, networking sites tried best to have right privacy mechanisms in place for users, enabling them to share the right content with the right audience. With all these efforts, privacy customizations remain hard for users across the sites. Existing research that address this problem mainly focus on semi-supervised strategies that introduce extra complexity by requiring the user to manually specify initial privacy preferences for their friends. In this work, we suggest an adaptive solution that can dynamically generate privacy labels for users in OSNs. To this end, we introduce a deep reinforcement learning framework that targets two key problems in OSNs like Facebook: the exposure of users' interactions through the network to less trusted direct friends, and the possibility of propagating user updates through direct friends' interactions to indirect friends. By implementing this framework, we aim at understanding how social trust and privacy could be correlated, specifically in a dynamic fashion. We report the ranked dependence between the generated privacy labels and the estimated user trust values, which indicate the ability of the framework to identify the highly trusted users and share with them higher percentages of data.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2016. s. 203-206
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-200264DOI: 10.1109/ASONAM.2016.7752236ISI: 000390760100031Scopus ID: 2-s2.0-85006765626ISBN: 978-1-5090-2846-7 (tryckt)OAI: oai:DiVA.org:kth-200264DiVA, id: diva2:1069753
Konferens
8th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), AUG 18-21, 2016, San Francisco, CA
Anmärkning

QC 20170130

Tillgänglig från: 2017-01-30 Skapad: 2017-01-23 Senast uppdaterad: 2020-03-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://asonam.cpsc.ucalgary.ca/2016/CFP.php

Personposter BETA

Matskin, Mihhail

Sök vidare i DiVA

Av författaren/redaktören
Jaradat, ShathaDokoohaki, NimaMatskin, Mihhail
Av organisationen
Programvaruteknik och Datorsystem, SCS
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 86 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf