Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robust online motion capture labeling of finger markers
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.ORCID-id: 0000-0002-7801-7617
KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.ORCID-id: 0000-0003-1399-6604
2016 (Engelska)Ingår i: Proceedings - Motion in Games 2016: 9th International Conference on Motion in Games, MIG 2016, ACM Digital Library, 2016, s. 7-13Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Passive optical motion capture is one of the predominant technologies for capturing high fidelity human skeletal motion, and is a workhorse in a large number of areas such as bio-mechanics, film and video games. While most state-of-the-art systems can automatically identify and track markers on the larger parts of the human body, the markers attached to fingers provide unique challenges and usually require extensive manual cleanup. In this work we present a robust online method for identification and tracking of passive motion capture markers attached to the fingers of the hands. The method is especially suited for large capture volumes and sparse marker sets of 3 to 10 markers per hand. Once trained, our system can automatically initialize and track the markers, and the subject may exit and enter the capture volume at will. By using multiple assignment hypotheses and soft decisions, it can robustly recover from a difficult situation with many simultaneous occlusions and false observations (ghost markers). We evaluate the method on a collection of sparse marker sets commonly used in industry and in the research community. We also compare the results with two of the most widely used motion capture platforms: Motion Analysis Cortex and Vicon Blade. The results show that our method is better at attaining correct marker labels and is especially beneficial for real-time applications.

Ort, förlag, år, upplaga, sidor
ACM Digital Library, 2016. s. 7-13
Nyckelord [en]
Animation, Hand capture, Labeling, Motion capture, Online methods, Optical motion capture, Real-time application, Research communities, Skeletal motions, State-of-the-art system, Human computer interaction
Nationell ämneskategori
Annan teknik
Identifikatorer
URN: urn:nbn:se:kth:diva-201773DOI: 10.1145/2994258.2994264Scopus ID: 2-s2.0-84994806827ISBN: 9781450345927 (tryckt)OAI: oai:DiVA.org:kth-201773DiVA, id: diva2:1075761
Konferens
9th International Conference on Motion in Games, MIG 2016, 10 October 2016 through 12 October 2016
Anmärkning

Funding text: We wish to thank Anton Söderhäll and Samuel Tyskling at Imagination Studios for providing motion capture services used in this study as well as valuable feedback and discussions on the state-of-the-art in the industry. We also thank Ludovic Hoyet for discussions and for labeling the second data set with Vicon Blade. This work was funded by KTH/SRA ICT and The Next Generation and Science foundation Ireland PI grant S.F. 10/IN.1/13003.

QC 20170221

Tillgänglig från: 2017-02-21 Skapad: 2017-02-21 Senast uppdaterad: 2017-02-21Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Alexanderson, SimonBeskow, Jonas
Av organisationen
Tal, musik och hörsel, TMH
Annan teknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 371 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf