Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of Surface Charge Density and Morphology on the Formation of Polyelectrolyte Multilayers on Smooth Charged Cellulose Surfaces
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-4388-8970
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-8622-0386
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-5444-7276
2017 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 33, no 4, p. 968-979Article in journal (Refereed) Published
Abstract [en]

To clarify the importance of the surface charge for the formation of polyelectrolyte multilayers, layer-by-layer (LbL) assemblies of polydiallyldimethylammonium chloride (pDADMAC) and polystyrenesulfonate (PSS) have been investigated on cellulose films with different carboxylic acid contents (20, 350, 870, and 1200 μmol/g) regenerated from oxidized cellulose. The wet cellulose films were thoroughly characterized prior to multilayer deposition using quantitative nanomechanical mapping (QNM), which showed that the mechanical properties were greatly affected by the degree of oxidation of the cellulose. Atomic force microscopy (AFM) force measurements were used to determine the surface potential of the cellulose films by fitting the force data to the DLVO theory. With the exception of the 1200 μmol/g film, the force measurements showed a second-order polynomial increase in surface potential with increasing degree of oxidation. The low surface potential for the 1200 μmol/g film was attributed to the low degree of regeneration of the cellulose film in aqueous media due to increasing solubility with increasing charge. The multilayer formation was characterized using a quartz crystal microbalance with dissipation (QCM-D) and stagnation-point adsorption reflectometry (SPAR). Extensive deswelling was observed for the charged films when pDADMAC was adsorbed due to the reduced osmotic pressure when ions inside the film were released, and the 1:1 charge compensation showed that all the charges in the films were reached by the pDADMAC. The multilayer formation was not significantly affected by the charge density above 350 μmol/g due to interlayer repulsions, but it was strongly affected by the salt concentration during the layer build-up.

Place, publisher, year, edition, pages
2017. Vol. 33, no 4, p. 968-979
National Category
Polymer Chemistry Physical Chemistry Nano Technology
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-202758DOI: 10.1021/acs.langmuir.6b04217ISI: 000393269700016Scopus ID: 2-s2.0-85011277065OAI: oai:DiVA.org:kth-202758DiVA, id: diva2:1078588
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20170313

Available from: 2017-03-06 Created: 2017-03-06 Last updated: 2019-04-08Bibliographically approved
In thesis
1. Design of Cellulose-based Materials by Supramolecular Assemblies
Open this publication in new window or tab >>Design of Cellulose-based Materials by Supramolecular Assemblies
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Due to climate change and plastic pollution, there is an increasing demand for bio-based materials with similar properties to those of common plastics yet biodegradable. In this respect, cellulose is a strong candidate that is already being refined on a large industrial scale, but the properties differ significantly from those of common plastics in terms of shapeability and water-resilience.

This thesis investigates how supramolecular interactions can be used to tailor the properties of cellulose-based materials by modifying cellulose surfaces or control the assembly of cellulose nanofibrils (CNFs). Most of the work is a fundamental study on interactions in aqueous environments, but some material concepts are presented and potential applications are discussed.

The first part deals with the modification of cellulose by the spontaneous adsorption of xyloglucan or polyelectrolytes. The results indicate that xyloglucan adsorbs to cellulose due to the increased entropy of water released from the surfaces, which is similar to the increased entropy of released counter-ions that drives polyelectrolyte adsorption. The polyelectrolyte adsorption depends on the charge of the cellulose up to a limit after which the charge density affects only the first adsorbed layer in a multilayer formation.

Latex nanoparticles with polyelectrolyte coronas can be adsorbed onto cellulose in order to prepare hydrophobic cellulose surfaces with strong and ductile wet adhesion, provided the glass transition of the core is below the ambient temperature.

The second part of the thesis seeks to explain the interactions between different types of cellulose nanofibrils in the presence of different ions, using a model consisting of ion-ion correlation and specific ion effects, which can be employed to rationally design water-resilient and transparent nanocellulose films. The addition of small amounts of alginate also creates interpenetrating double networks, and these networks lead to a synergy which improves both the stiffness and the ductility of the films in water.

A network model has been developed to understand these materials, with the aim to explain the properties of fibril networks, based on parameters such as the aspect ratio of the fibrils, the solidity of the network, and the ion-induced interactions that increase the friction between fibrils. With the help of this network model and the model for ion-induced interactions, we have created films with wet-strengths surpassing those of common plastics, or a ductility suitable for hygroplastic forming into water-resilient and biodegradable packages. Due to their transparency, water content, and the biocompatibility of cellulose, these materials are also suitable for biomaterial or bioelectronics applications. 

Abstract [sv]

På grund av klimatförändringar och ständigt ökande plastföroreningar finns det en växande efterfrågan på biobaserade material med egenskaper som liknar dem hos vanliga plaster och som samtidigt är biologiskt nedbrytbara. I detta avseende är cellulosa är en stark kandidat som redan framställs i stor industriell skala, men egenskaperna skiljer sig markant från plasternas med avseende på formbarhet och vattentålighet.

Denna avhandling undersöker hur supramolekylära interaktioner kan användas för att skräddarsy egenskaperna hos cellulosa-baserade material genom att modifiera cellulosaytor eller styra hur cellulosa nanofibriller (CNFs) sätts samman. Huvuddelen av arbetet berör grundläggande studier kring interaktioner i vatten, men några materialkoncept och potentiella tillämpningar diskuteras.

Den första delen avhandlar hur spontan adsorption av xyloglukan eller polyelektrolyter kan användas för att modifiera cellulosa. Resultaten indikerar att xyloglukan adsorberar till cellulosa på grund av den ökade entropin hos vatten som frigörs från ytorna, vilket liknar den ökade entropin hos frigjorda motjoner som driver polyelektrolytadsorption. Adsorptionen av polyeletrolyter beror på cellulosans laddning upp till en viss gräns, varefter laddningstätheten endast påverkar adsorptionen i första lagret i en multilager formering.

Adsorption av latexnanopartiklar med en korona av polyeletrolyter, ger hydrofoba cellulosaytor med stark och töjbar, våt vidhäftning, om kärnans glasövergång sker vid lägre temperatur än omgivningens.

Syftet med den andra delen av avhandlingen är att förklara interaktioner mellan olika typer av cellulosa nanofibriller i närvaro av olika joner. Detta görs med en modell bestående av jon-jonkorrelation och specifika joneffekter, som kan användas för rationell design av vattentåliga och transparenta filmer av nanocellulosa. Tillsatsen av små mängder alginat skapar också interpenetrerande dubbla nätverk, och dessa nätverk leder till en synergi som förbättrar både styvheten och töjbarheten hos filmerna i vatten.

En nätverksmodell utvecklades för att förstå dessa material. Modellen klarar av att förklara hur egenskaperna hos fibrillnätverk beror av parametrar som fibrillernas geometri, nätverkets soliditet och friktionen som induceras av specifika joner. Med hjälp av nätverksmodellen och modellen för joninducerade interaktioner kan vi skapa filmer med våtstyrka som överträffar den hos många plaster, eller med en töjbarhet som är lämplig för hygroplastisk formpressning till vattentåliga och biologiskt nedbrytbara förpackningar. Filmernas transparens och vatteninnehåll, samt biokompatibiliteten hos cellulosa, gör dem lämpliga som biomaterial eller för bioelektronikapplikationer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2019. p. 66
Series
TRITA-CBH-FOU ; 2019:19
Keywords
Adhesion, adsorption, alginate, assemblies, biodegradable, biomaterials, biopolymers, cellulose, cellulose nanofibrils, CNFs, gas barrier, hemicellulose, interfaces, ion-ion correlation, latex, layer-by-layer, metal-ligand complexes, montmorillonite, multivalent ions, packaging, PISA, polyelectrolyte multilayers, polyelectrolytes, polysaccharides, RAFT, renewable, specific ion effects, supramolecular, surfaces, sustainable, thin films, water-resilient, xyloglucan
National Category
Chemical Sciences Materials Chemistry Polymer Chemistry Physical Chemistry Nano Technology Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-248046 (URN)978-91-7873-161-9 (ISBN)
Public defence
2019-05-10, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20190411

Available from: 2019-04-11 Created: 2019-04-03 Last updated: 2019-04-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b04217

Search in DiVA

By author/editor
Benselfelt, TobiasWågberg, LarsPettersson, Torbjörn
By organisation
Fibre TechnologyWallenberg Wood Science Center
In the same journal
Langmuir
Polymer ChemistryPhysical ChemistryNano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1694 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf