Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Probabilistic computation underlying sequence learning in a spiking attractor memory network
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. Karolinska Institutet, Sweden; University of Edinburgh, UK.ORCID-id: 0000-0001-8796-3237
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. Karolinska Institutet, Sweden.
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. Stockholm University, Stockholm; Karolinska Institutet, Sweden.ORCID-id: 0000-0002-2358-7815
2013 (engelsk)Inngår i: BMC neuroscience (Online), ISSN 1471-2202, E-ISSN 1471-2202, nr 14 (Suppl 1)Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
BioMed Central, 2013. nr 14 (Suppl 1)
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-205609DOI: 10.1186/1471-2202-14-S1-P236OAI: oai:DiVA.org:kth-205609DiVA, id: diva2:1089498
Merknad

QC 20170421

Tilgjengelig fra: 2017-04-20 Laget: 2017-04-20 Sist oppdatert: 2018-01-13bibliografisk kontrollert
Inngår i avhandling
1. Spike-Based Bayesian-Hebbian Learning in Cortical and Subcortical Microcircuits
Åpne denne publikasjonen i ny fane eller vindu >>Spike-Based Bayesian-Hebbian Learning in Cortical and Subcortical Microcircuits
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Cortical and subcortical microcircuits are continuously modified throughout life. Despite ongoing changes these networks stubbornly maintain their functions, which persist although destabilizing synaptic and nonsynaptic mechanisms should ostensibly propel them towards runaway excitation or quiescence. What dynamical phenomena exist to act together to balance such learning with information processing? What types of activity patterns

do they underpin, and how do these patterns relate to our perceptual experiences? What enables learning and memory operations to occur despite such massive and constant neural reorganization? Progress towards answering many of these questions can be pursued through large-scale neuronal simulations. 

 

In this thesis, a Hebbian learning rule for spiking neurons inspired by statistical inference is introduced. The spike-based version of the Bayesian Confidence Propagation Neural Network (BCPNN) learning rule involves changes in both synaptic strengths and intrinsic neuronal currents. The model is motivated by molecular cascades whose functional outcomes are mapped onto biological mechanisms such as Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability. Temporally interacting memory traces enable spike-timing dependence, a stable learning regime that remains competitive, postsynaptic activity regulation, spike-based reinforcement learning and intrinsic graded persistent firing levels. 

 

The thesis seeks to demonstrate how multiple interacting plasticity mechanisms can coordinate reinforcement, auto- and hetero-associative learning within large-scale, spiking, plastic neuronal networks. Spiking neural networks can represent information in the form of probability distributions, and a biophysical realization of Bayesian computation can help reconcile disparate experimental observations.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2017. s. 89
Serie
TRITA-CSC-A, ISSN 1653-5723 ; 2017:11
Emneord
Bayes' rule, synaptic plasticity and memory modeling, intrinsic excitability, naïve Bayes classifier, spiking neural networks, Hebbian learning, neuromorphic engineering, reinforcement learning, temporal sequence learning, attractor network
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
urn:nbn:se:kth:diva-205568 (URN)978-91-7729-351-4 (ISBN)
Disputas
2017-05-09, F3, Lindstedtsvägen 26, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Merknad

QC 20170421

Tilgjengelig fra: 2017-04-21 Laget: 2017-04-19 Sist oppdatert: 2017-04-21bibliografisk kontrollert

Open Access i DiVA

fulltext(316 kB)73 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 316 kBChecksum SHA-512
e08659390fa9bb3244e7c9d10840757a30697b15bab49942a87802a35a59ed26e0e005582abe8285c943e228d71e249930effd877ccb4e2481aa1f1bc8d294e2
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Tully, PhilipLansner, Anders

Søk i DiVA

Av forfatter/redaktør
Tully, PhilipLindén, HenrikLansner, Anders
Av organisasjonen
I samme tidsskrift
BMC neuroscience (Online)

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 73 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 85 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf