Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pap smear image classification using convolutional neural network
KTH, Skolan för teknik och hälsa (STH).
Vise andre og tillknytning
2016 (engelsk)Inngår i: ACM International Conference Proceeding Series, Association for Computing Machinery , 2016Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This article presents the result of a comprehensive study on deep learning based Computer Aided Diagnostic techniques for classification of cervical dysplasia using Pap smear images. All the experiments are performed on a real indigenous image database containing 1611 images, generated at two diagnostic centres. Focus is given on constructing an effective feature vector which can perform multiple level of representation of the features hidden in a Pap smear image. For this purpose Deep Convolutional Neural Network is used, followed by feature selection using an unsupervised technique with Maximal Information Compression Index as similarity measure. Finally performance of two classifiers namely Least Square Support Vector Machine (LSSVM) and Softmax Regression are monitored and classifier selection is performed based on five measures along with five fold cross validation technique. Output classes reflects the established Bethesda system of classification for identifying pre-cancerous and cancerous lesion of cervix. The proposed system is also compared with two existing conventional systems and also tested on a publicly available database. Experimental results and comparison shows that proposed system performs efficiently in Pap smear classification.

sted, utgiver, år, opplag, sider
Association for Computing Machinery , 2016.
Emneord [en]
Deep learning, LSSVM, Pap smear image, Softmax regression
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-207446DOI: 10.1145/3009977.3010068ISI: 000403654700055Scopus ID: 2-s2.0-85014841160ISBN: 9781450347532 (tryckt)OAI: oai:DiVA.org:kth-207446DiVA, id: diva2:1097932
Konferanse
10th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2016, 18 December 2016 through 22 December 2016
Merknad

QC 20170523

Tilgjengelig fra: 2017-05-23 Laget: 2017-05-23 Sist oppdatert: 2024-03-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Chowdhury, Manish

Søk i DiVA

Av forfatter/redaktør
Chowdhury, Manish
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 439 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf