kth.sePublikationer
Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 24/9-2024, kl 12.00-14.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pap smear image classification using convolutional neural network
KTH, Skolan för teknik och hälsa (STH).
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: ACM International Conference Proceeding Series, Association for Computing Machinery , 2016Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This article presents the result of a comprehensive study on deep learning based Computer Aided Diagnostic techniques for classification of cervical dysplasia using Pap smear images. All the experiments are performed on a real indigenous image database containing 1611 images, generated at two diagnostic centres. Focus is given on constructing an effective feature vector which can perform multiple level of representation of the features hidden in a Pap smear image. For this purpose Deep Convolutional Neural Network is used, followed by feature selection using an unsupervised technique with Maximal Information Compression Index as similarity measure. Finally performance of two classifiers namely Least Square Support Vector Machine (LSSVM) and Softmax Regression are monitored and classifier selection is performed based on five measures along with five fold cross validation technique. Output classes reflects the established Bethesda system of classification for identifying pre-cancerous and cancerous lesion of cervix. The proposed system is also compared with two existing conventional systems and also tested on a publicly available database. Experimental results and comparison shows that proposed system performs efficiently in Pap smear classification.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery , 2016.
Nyckelord [en]
Deep learning, LSSVM, Pap smear image, Softmax regression
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-207446DOI: 10.1145/3009977.3010068ISI: 000403654700055Scopus ID: 2-s2.0-85014841160ISBN: 9781450347532 (tryckt)OAI: oai:DiVA.org:kth-207446DiVA, id: diva2:1097932
Konferens
10th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2016, 18 December 2016 through 22 December 2016
Anmärkning

QC 20170523

Tillgänglig från: 2017-05-23 Skapad: 2017-05-23 Senast uppdaterad: 2024-03-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Chowdhury, Manish

Sök vidare i DiVA

Av författaren/redaktören
Chowdhury, Manish
Av organisationen
Skolan för teknik och hälsa (STH)
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 439 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf