Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Conductive biofoams of wheat gluten containing carbon nanotubes, carbon black or reduced graphene oxide
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.ORCID-id: 0000-0002-7674-0262
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.ORCID-id: 0000-0002-2230-3059
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.ORCID-id: 0000-0002-0236-5420
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, nr 30, s. 18260-18269Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Conductive biofoams made from glycerol-plasticized wheat gluten (WGG) are presented as a potential substitute in electrical applications for conductive polymer foams from crude oil. The soft plasticised foams were prepared by conventional freeze-drying of wheat gluten suspensions with carbon nanotubes (CNTs), carbon black (CB) or reduced graphene oxide (rGO) as the conductive filler phase. The change in conductivity upon compression was documented and the results show not only that the CNT-filled foams show a conductivity two orders of magnitude higher than foams filled with the CB particles, but also that there is a significantly lower percolation threshold with percolation occurring already at 0.18 vol%. The rGO-filled foams gave a conductivity inferior to that obtained with the CNTs or CB particles, which is explained as being related to the sheet-like morphology of the rGO flakes. An increasing amount of conductive filler resulted in smaller pore sizes for both CNTs and CB particles due to their interference with the ice crystal formation before the lyophilization process. The conductive WGG foams with CNTs were fully elastic with up to 10% compressive strain, but with increasing compression up to 50% strain the recovery gradually decreased. The data show that the conductivity strongly depends on the type as well as the concentration of the conductive filler, and the conductivity data with different compressions applied to these biofoams are presented for the first time.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry, 2017. Vol. 7, nr 30, s. 18260-18269
Nyckelord [en]
Carbon black, Carbon nanotubes, Compaction, Crude oil, Fillers, Graphene, Nanotubes, Pore size, Solvents, Yarn, Compressive strain, Conductive fillers, Conductive Polymer, Electrical applications, Orders of magnitude, Percolation thresholds, Reduced graphene oxides, Reduced graphene oxides (RGO), Foams
Nationell ämneskategori
Polymerteknologi
Identifikatorer
URN: urn:nbn:se:kth:diva-207441DOI: 10.1039/c7ra01082fISI: 000399005500011Scopus ID: 2-s2.0-85016468994OAI: oai:DiVA.org:kth-207441DiVA, id: diva2:1098139
Anmärkning

Funding details: EIT, European Institute of Innovation and Technology; Funding details: 243-2011-1436, Svenska Forskningsrådet Formas; Funding text: This work was financed by the Swedish Research Council Formas (No. 243-2011-1436). R. L. Andersson acknowledges the support from: European Institute of Innovation and Technology (EIT)-KIC InnoEnergy, Swedish Centre for Smart Grids and Energy Storage (SweGRIDS) and ABB AB.

QC 20170523

Tillgänglig från: 2017-05-23 Skapad: 2017-05-23 Senast uppdaterad: 2017-11-29Bibliografiskt granskad
Ingår i avhandling
1. Biofoams and Biocomposites based on Wheat Gluten Proteins
Öppna denna publikation i ny flik eller fönster >>Biofoams and Biocomposites based on Wheat Gluten Proteins
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Novel uses of wheat gluten (WG) proteins, obtained e.g. as a coproduct from bio-ethanol production, are presented in this thesis. A flame-retardant foam was prepared via in-situ polymerization of hydrolyzed tetraethyl orthosilicate (TEOS) in a denatured WG matrix (Paper I). The TEOS formed a well-dispersed silica phase in the walls of the foam. With silica contents ≥ 6.7 wt%, the foams showed excellent fire resistance. An aspect of the bio-based foams was their high sensitivity to fungi and bacterial growth. This was addressed in Paper II using a natural antimicrobial agent Lanasol. In the same paper, a swelling of 32 times its initial weight in water was observed for the pristine WG foam and both capillary effects and cell wall absorption contributed to the high uptake. In Paper III, conductive and flexible foams were obtained using carbon-based nanofillers and plasticizer. It was found that the electrical resistance of the carbon nanotubes and carbon black filled foams were strain-independent, which makes them suitable for applications in electromagnetic shielding (EMI) and electrostatic discharge protection (ESD). Paper IV describes a ‘water-welding’ method where larger pieces of WG foams were made by wetting the sides of the smaller cubes before being assembled together. The flexural strength of welded foams was ca. 7 times higher than that of the same size WG foam prepared in one piece. The technique provides a strategy for using freeze-dried WG foams in applications where larger foams are required.

Despite the versatile functionalities of the WG-based materials, the mechanical properties are often limited due to the brittleness of the dry solid WG. WG/flax composites were developed for improved mechanical properties of WG (Paper V). The results revealed that WG, reinforced with 19 wt% flax fibres, had a strength that was ca. 8 times higher than that of the pure WG matrix. Furthermore, the crack-resistance was also significantly improved in the presence of the flax.

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2017. s. 98
Serie
TRITA-CHE-Report, ISSN 1654-1081 ; 2017:30
Nyckelord
Wheat gluten, biofoam, biocomposite, freeze-drying, flame-retardant, silica, antimicrobial, bimodal, conductive biofoam, flax fiber, crack-resistance
Nationell ämneskategori
Polymerteknologi
Forskningsämne
Kemi
Identifikatorer
urn:nbn:se:kth:diva-207778 (URN)978-91-7729-453-5 (ISBN)
Disputation
2017-08-25, F3, Lindstedtsvägen 26, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Forskningsrådet Formas, 243-2011-1436
Anmärkning

QC 20170524

Tillgänglig från: 2017-07-14 Skapad: 2017-05-23 Senast uppdaterad: 2017-07-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Wu, QiongAndersson, Richard L.Peuvot, KevinNilsson, FritjofHedenqvist, Mikael S.Olsson, Richard T.

Sök vidare i DiVA

Av författaren/redaktören
Wu, QiongSundborg, HenrikAndersson, Richard L.Peuvot, KevinGuex, LeonardNilsson, FritjofHedenqvist, Mikael S.Olsson, Richard T.
Av organisationen
Polymera materialFiber- och polymerteknologi
I samma tidskrift
RSC Advances
Polymerteknologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 174 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf