Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Electro-optical effects of high aspect ratio P3HT nanofibers colloid in polymer micro-fluid cells
KTH, Skolan för teknikvetenskap (SCI).
KTH, Skolan för teknikvetenskap (SCI).ORCID-id: 0000-0002-0728-6684
KTH, Skolan för elektro- och systemteknik (EES), Mikro- och nanosystemteknik.ORCID-id: 0000-0003-4322-6192
KTH, Skolan för teknikvetenskap (SCI).
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 42, nr 11, s. 2157-2160Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This Letter reports the electro-optical (EO) effect of Poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofibers colloid in a polymer micro-fluidic EO cell. P3HT nanofibers are high aspect ratio semiconducting nanostructures, and can be collectively aligned by an external alternating electric field. Optical transmission modulated by the electric field is a manifestation of the electro-optical effect due to high inner crystallinity of P3HT nanofibers. According to our results, the degree of alignment reaches a maximum at 0.6 V/μm of electric field strength, implying a big polarizability value due to geometry and electrical properties of P3HT nanofibers. We believe that one-dimensional crystalline organic nanostructures have a large potential in EO devices due to their significant anisotropy, wide variety of properties, low actuation voltages, and opportunity to be tailored via adjustment of the fabrication process.

Ort, förlag, år, upplaga, sidor
OSA Publishing , 2017. Vol. 42, nr 11, s. 2157-2160
Nyckelord [en]
P3HT, Nanofibers, optofluidics, reaction injectin molding, RIM, OSTE, micro-fluid cells
Nationell ämneskategori
Nanoteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-207850DOI: 10.1364/OL.42.002157ISI: 000403534700027PubMedID: 28569870Scopus ID: 2-s2.0-85020417115OAI: oai:DiVA.org:kth-207850DiVA, id: diva2:1098890
Anmärkning

QC 20170613

Tillgänglig från: 2017-05-27 Skapad: 2017-05-27 Senast uppdaterad: 2020-03-09Bibliografiskt granskad
Ingår i avhandling
1. Electro-optical properties of one-dimensional organic crystals
Öppna denna publikation i ny flik eller fönster >>Electro-optical properties of one-dimensional organic crystals
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The recent development of photonics and applications puts new challenges for systems using emission, transmission and modulation of light. For these reasons, novel optical materials attract a special interest for their enabling properties for novel technologies.

In this work, we performed the research on fundamental properties and the possibility of implementation of electro-optical response of Poly-3-hexylthiophene-2,5-diyl (P3HT) nanofibers, which belong to the class of organic semiconductor crystalline materials. Our research demonstrated that an external electric field allows controlling the orientation of nanofibers dispersed in a solution by changing the electrical properties of P3HT crystals. This method was used to introduce a collective alignment of P3HT nanofibers and to impact the optical properties of the colloid. The spectroscopic and polarization measurements show that P3HT nanofibers possess optical anisotropy in a wide range of visible spectrum. This property combined with the ability to manipulate the orientation of nanofibers dynamically, was used for direct phase and intensity modulation of transmitted light. Along with these investigations, several engineering and technology tasks were solved. We have designed the transverse electro-optical cell using all-optical-fiber approach, as well as the longitudinal electro-optical cell was fabricated using a novel polymer molding technique.

The obtained research results demonstrate the potential of P3HT crystalline nanofibers as a material class of large niche of applications, not only limited to photovoltaics but also being implemented in electro-optical systems to control light polarization and propagation.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2017. s. 55
Nationell ämneskategori
Nanoteknik
Forskningsämne
Fysik
Identifikatorer
urn:nbn:se:kth:diva-220529 (URN)
Disputation
2017-11-24, Sal C, Electrum, Stockholm, 10:00 (Engelska)
Handledare
Anmärkning

QC 20171229

Tillgänglig från: 2017-12-29 Skapad: 2017-12-22 Senast uppdaterad: 2018-01-18Bibliografiskt granskad
2. Thiol-ene Nanostructuring
Öppna denna publikation i ny flik eller fönster >>Thiol-ene Nanostructuring
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Improving the health and well-being of humankind does not only constitute

part of our moral codes, but is also enlisted as the number three goal of

the 2030 agenda for sustainable development set by the UN. Fulfilling such

objective in the regions of resource-poor settings or for age groups with more

vulnerability to infectious agents demands immediate actions. This has necessitated

novel ways of rapid and ultra-sensitive diagnostics to provide compact

and affordable systems, e.g. for an early detection of bacteria and viruses.

The fields of bio-micro/nanoelectromechanical systems (BioMEMS/NEMS)

and lab-on-a-chip (LoC) have been founded based on such demands, but

critically challenged by problems partly associated with manufacturing and

material domains and biosensing methods. The fabrication methods for the

miniaturization of features and components are often complicated and expensive,

the commonly used materials are typically not adaptable to industrial

settings, and the sensing mechanisms are sometimes not sensitive enough for

the detection of lowly-concentrated samples.

In this thesis, new methods of ultra-miniaturization, as well as conventional

cleanroom-based techniques, for nanopatterning of well-defined topographies

in off-stoichiometry thiol-ene-(epoxy) polymers are presented. In addition,

their use for several sensing applications has been demonstrated. The

first part of the thesis gives an introduction to the field of BioMEMS/NEMS.

The second part of the thesis presents a technical background about the

prevalent methods of polymer micro- and nanofabrication, implementation

of the resulting polymer structures for different sensing applications, along

with the existing challenges and shortcomings associated with state of the

art. The third part of the thesis presents e-beam nanostructuring of thiol-ene

resist, for the first time, achieving the smallest and densest features reported

in these polymer networks. The thiol-ene-based polymer also represents a

novel class of e-beam resist resulting in structures with reactive surface nature.

The fourth part of the thesis demonstrates the use of thiol-ene-epoxy

systems for nanoimprint lithography and further shows the structuring of

high-aspect-ratio and hierarchical topologies via single-step UV-NIL. The fifth

part of the thesis introduces Micro- and NanoRIM platforms for scalable and

off-cleanroom manufacturing of microfluidic devices and nanostructuring of

materials in thiol-ene (-epoxy) systems. The sixth part of the thesis exhibits

the implementation of the noted nanofabrication methods for different

BioMEMS/NEMS applications including protein nanopatterning, simultaneous

molding and surface energy patterning, ultra-sensitive digital biosensing,

and facile quartz crystal microbalance (QCM) sensor packaging.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2019. s. 109
Serie
TRITA-EECS-AVL ; 2019:32
Nyckelord
Nanostructuring, thiol-ene, OSTE, electron beam lithography (EBL), reaction injection molding (RIM), nanoimprint lithography (NIL), BioNEMS, QCM, digital bioassay, protein patterning, Lab-on-a-chip, polymer
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:kth:diva-235348 (URN)978-91-7873-154-1 (ISBN)
Disputation
2019-04-26, Kollegiesalen, Brinellvägen 8, KTH Royal Institute of Technolog, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20190405

Tillgänglig från: 2019-04-05 Skapad: 2019-04-04 Senast uppdaterad: 2019-04-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Lobov, GlebMarinins, AleksandrsShafagh, R. Zandivan der Wijngaart, W.Haraldsson, T.

Sök vidare i DiVA

Av författaren/redaktören
Lobov, GlebMarinins, AleksandrsShafagh, R. Zandivan der Wijngaart, W.Wosinski, L.Toprak, M. S.Haraldsson, T.Östling, M.Popov, S.
Av organisationen
Skolan för teknikvetenskap (SCI)Mikro- och nanosystemteknikSkolan för bioteknologi (BIO)Skolan för informations- och kommunikationsteknik (ICT)
I samma tidskrift
Optics Letters
Nanoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 648 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf