Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automation and synchronizationof traction assistance devices toimprove traction and steerability ofa construction truck
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, Fordonsdynamik.
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, Fordonsdynamik.
2017 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Automotive development has always been need-based and the product of today is an evolutionover several decades and a diversied technology application to deliver better products to theend users. Steady increase in the deployment of on-board electronics and software is characterizedby the demand and stringent regulations. Today, almost every function on-board a modernvehicle is either monitored or controlled electronically.One such specic demand for AB Volvo arose out of construction trucks in the US market. Usersseldom have/had a view of the operational boundaries of the drivetrain components, resultingin inappropriate use causing damage, poor traction and steering performance. Also, AB Volvo'sstand-alone traction assistance functions were not suciently capable to handle the vehicle useconditions. Hence, the goal was set to automate and synchronize the traction assistance devicesand software functions to improve the traction and steerability under a variety of road conditions.The rst steps in this thesis involved understanding the drivetrain components from design andoperational boundary perspective. The function descriptions of the various traction softwarefunctions were reviewed and a development/integration plan drafted. A literature survey wascarried out seeking potential improvement in traction from dierential locking and also its eectson steerability. A benchmarking exercise was carried out to identify competitor and suppliertechnologies available for the traction device automation task.The focus was then shifted to developing and validating the traction controller in a simulationenvironment. Importance was given to modeling of drivetrain components and renement ofvehicle behavior to study and understand the eects of dierential locking and develop a differentiallock control strategy. The modeling also included creating dierent road segments toreplicate use environment and simulating vehicle performance in the same, to reduce test timeand costs. With well-correlated vehicle performance results, a dierential lock control strategywas developed and simulated to observe traction improvement. It was then implemented onan all-wheel drive construction truck using dSPACE Autobox to test, validate and rene thecontroller.Periodic test sessions carried out at Hallered proving ground, Sweden were important to re-ne the control strategy. Feedback from test drivers and inputs from cross-functional teamswere essential to develop a robust controller and the same was tested for vehicle suitability andrepeatability of results. When comparing with the existing traction software functions, the integrateddierential lock and transfer case lock controller showed signicantly better performanceunder most test conditions. Repeatable results proved the reliability of developed controller.The correlation between vehicle test scenarios and simulation environment results indicated theaccuracy of software models and control strategy, bi-directionally.Finally, the new traction assistance device controller function was demonstrated within ABVolvo to showcase the traction improvement and uncompromising steerability.

sted, utgiver, år, opplag, sider
2017. , s. 78
Serie
TRITA-AVE, ISSN 1651-7660 ; 2017:11
Emneord [en]
All-wheel drive, Control strategy, Dierential lock control, Drivetrain, Modeling, Simulation, Steerability, Traction, Vehicle performance
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-209198OAI: oai:DiVA.org:kth-209198DiVA, id: diva2:1110812
Eksternt samarbeid
Volvo GTT
Examiner
Tilgjengelig fra: 2017-06-16 Laget: 2017-06-16 Sist oppdatert: 2017-06-16bibliografisk kontrollert

Open Access i DiVA

fulltext(2820 kB)112 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2820 kBChecksum SHA-512
39f5f0934a769dbca889faeeb8077af5afefef88de031b54b8157e9a25946e017429e3fedbc7a1475d4987e08be31d0111cc33add5f9e9b14d6f5a0a5b41fee0
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 112 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 3395 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf