Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The effect of particle size and base liquid on thermo-physical properties of ethylene and diethylene glycol based copper micro- and nanofluids
KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.
KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
2017 (engelsk)Inngår i: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 86, s. 143-149Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Nanofluid (NF) is a fluid containing nanometer-sized particles. The present work investigates, experimentally and theoretically, on fabrication and thermo-physical properties evaluation of ethylene glycol and diethylene glycol (EG/DEG) based nanofluids/microfluids (NFs/MFs) containing copper nanoparticles/microparticles (NPs/MPs) with focus on the effect of the particle size and the base liquid. A series of stable Cu NFs and MFs with various NP/MP concentration (1, 2 and 3 wt%) were fabricated by dispersing Cu NPs and Cu MPs in EG and DEG as the base liquids. The physicochemical properties of Cu NFs and MFs were analyzed by various techniques including X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The thermo-physical properties including thermal conductivity (TC) and viscosity of EG/DEG based Cu NFs/MFs were measured at 20 to 40 °C. The results for TC and viscosity of EG based Cu NF/MFs were compared to the same NFs/MFs with DEG base liquid with focus on the impact of the particle size as well as the base liquid. The experiments showed that EG based NFs/MFs exhibit more favorable characteristics than that of DEG based ones. Moreover, NFs with Cu NPs revealed higher TC than those MFs containing Cu MPs at the same particle concentration and temperature (effect of NP size). As the best result, a TC enhancement of ~ 4.7% was achieved for EG based NF with 3 wt% Cu NP while maximum increase in viscosity of ~ 1.8% was observed for the same NF at 20 °C. To compare the experimental results with the estimated values, Maxwell predictive correlation and Corcione model were employed while Einstein equations as well as Kriger-Dougherty correlation were applied for TC and viscosity of NFs/MFs, respectively.

sted, utgiver, år, opplag, sider
Elsevier, 2017. Vol. 86, s. 143-149
Emneord [en]
Copper microparticle, Copper nanoparticles, Nanofluids, Thermal conductivity, Viscosity
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-210593DOI: 10.1016/j.icheatmasstransfer.2017.05.026ISI: 000408183800016Scopus ID: 2-s2.0-85020917481OAI: oai:DiVA.org:kth-210593DiVA, id: diva2:1118975
Forskningsfinansiär
Swedish Research Council, D0564701
Merknad

QC 20170703

Tilgjengelig fra: 2017-07-03 Laget: 2017-07-03 Sist oppdatert: 2017-09-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Ghanbarpour, MortezaKhodabandeh, RahmatollahToprak, Muhammet S.
Av organisasjonen
I samme tidsskrift
International Communications in Heat and Mass Transfer

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 19 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf