Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical simulations of elastic capsules with nucleus in shear flow
KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.ORCID-id: 0000-0002-4346-4732
2017 (engelsk)Inngår i: EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, ISSN 1779-7179, Vol. 26, nr 1-2, s. 131-153Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The shear-induced deformation of a capsule with a stiff nucleus, a model of eukaryotic cells, is studied numerically. The membrane of the cell and of its nucleus are modelled as a thin elastic material obeying a Neo-Hookean constitutive law. The fluid-structure coupling is obtained using an immersed boundary method. The variations induced by the presence of the nucleus on the cell deformation are investigated when varying the viscosity ratio between the inner and outer fluids, the membrane elasticity and its bending stiffness. The deformation of the eukaryotic cell is smaller than that of the prokaryotic one. The reduction in deformation increases for larger values of the capillary number. The eukaryotic cell remains thicker in itsmiddle part compared to the prokaryotic one, thus making it less flexible to pass through narrow capillaries. For a viscosity ratio of 5, the deformation of the cell is smaller than in the case of uniform viscosity. In addition, for non-zero bending stiffness of the membrane, the deformation decreases and the shape is closer to an ellipsoid. Finally, we compare the results obtained modelling the nucleus as an inner stiffer membrane with those obtained using a rigid particle.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2017. Vol. 26, nr 1-2, s. 131-153
Emneord [en]
Capsule, nucleus, shear flow, immersed boundary method
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-211628DOI: 10.1080/17797179.2017.1294828ISI: 000406001800009Scopus ID: 2-s2.0-85014470144OAI: oai:DiVA.org:kth-211628DiVA, id: diva2:1130446
Forskningsfinansiär
EU, European Research Council, ERC-2013-CoG616186Swedish Research CouncilSwedish National Infrastructure for Computing (SNIC), SNIC 2016/10-36
Merknad

QC 20170809

Tilgjengelig fra: 2017-08-09 Laget: 2017-08-09 Sist oppdatert: 2019-05-07bibliografisk kontrollert
Inngår i avhandling
1. Simulation of deformable objects transported in fluid flow
Åpne denne publikasjonen i ny fane eller vindu >>Simulation of deformable objects transported in fluid flow
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Deformable particles suspended in a viscous fluid can be found in many industrial and biological applications. In this thesis, two different numerical tools have been developed to simulate suspensions of capsules, thin membranes enclosing a second fluid and a rigid nucleus so to work as model for ”Eukaryotic” cells, and flexible slender bodies known as filaments/fibres. Both tools use a semi-implicit fluid flow solver with different approaches for the deformable structure. The capsule membrane is modelled as a thin hyperelastic material and the elasticity equations are solved with an accurate spectral representation of the capsule shape as a truncated number of spherical harmonics. The filaments are considered as one dimensional inextensible slender bodies obeying Euler-Bernoulli beam equations which is solved by a two-step method using finite difference discretisation. The immersed boundary method is exploited to couple the fluid and solid motion using different versions for the two different objects considered. The nucleus inside the capsules is modelled either as a second stiffer capsule or as a rigid particle. In order to avoid membrane-membrane, membrane-wall and membrane-nucleus overlapping, a short range repulsive force is implemented in terms of a potential function of the distance between the approaching objects. For the short range interactions between the filaments, both lubrication correction and collision forces are considered and it is found that the inclusion of the lubrication correction has significant effect on the rheology in shear flow. Both codes are validated against the numerical and experimental data in the literature. We study the capsule behaviour in a simple shear flow created by with two walls moving in opposite directions. The membrane obeys the Neo-Hookean constitutive equations and, in the simulations with a rigid nucleus, its radius is fixed to half the capsule initial radius. The filaments, on the other hand, are studied in 4 different flow configurations: shear flow, channel flow, settling in quiescent fluid and homogeneous isotropic turbulence. The results indicate that for single capsule, the nucleus reduces the membrane deformation significantly and changes the deformed shaped when there is negligible bending resistance of the membrane. The rheological properties of nucleated capsule suspensions result from the competition between the capsule deformation and their orientation angle and similarly to the case of single capsules, the nucleus reduces the mean deformation. By increasing the capsule volume fraction, the relative viscosity increases and capsules become more oriented in the mean flow direction. Filament suspensions in shear flow exhibit shear thinning behaviour with respect to deformability; inertia has a significant effect on the rheological properties of the suspensions as documented here. For the case of settling fibres, we document the formation of columnar structures with higher settling velocity known as streamers, which are more pronounced at higher volume fractions and for flexible fibres. For a single filament in homogeneous isotropic turbulence, two distinct regimes for the filament motion are identified with a sharp transition from one to another at a critical bending stiffness. In turbulent channel flow, we demonstrate how finite-size filaments cause considerable drag reduction, of the order of 30% for volume fractions of the order of 1.5%, and that the main averaged quantities are almost independent of the filament flexibility for the bending rigidities studied here.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2019. s. 72
HSV kategori
Forskningsprogram
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-250721 (URN)978-91-7873-219-7 (ISBN)
Disputas
2019-06-03, F3 - Sing Sing, Lindstedtsvägen 26, Stockholm, 10:15 (engelsk)
Opponent
Veileder
Merknad

QC 20190507

Tilgjengelig fra: 2019-05-07 Laget: 2019-05-03 Sist oppdatert: 2019-05-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Banaei, Arash AlizadLoiseau, Jean-ChristopheLashgari, ImanBrandt, L.uca

Søk i DiVA

Av forfatter/redaktør
Banaei, Arash AlizadLoiseau, Jean-ChristopheLashgari, ImanBrandt, L.uca
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 280 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf