Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Segmentation of Cortical Bone using Fast Level Sets
KTH, Skolan för teknik och hälsa (STH).
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering.ORCID-id: 0000-0002-6827-9162
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering. KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildteknik.ORCID-id: 0000-0002-0442-3524
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering.ORCID-id: 0000-0002-7750-1917
Vise andre og tillknytning
2017 (engelsk)Inngår i: MEDICAL IMAGING 2017: IMAGE PROCESSING / [ed] Styner, MA Angelini, ED, SPIE - International Society for Optical Engineering, 2017, artikkel-id UNSP 1013327Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Cortical bone plays a big role in the mechanical competence of bone. The analysis of cortical bone requires accurate segmentation methods. Level set methods are usually in the state-of-the-art for segmenting medical images. However, traditional implementations of this method are computationally expensive. This drawback was recently tackled through the so-called coherent propagation extension of the classical algorithm which has decreased computation times dramatically. In this study, we assess the potential of this technique for segmenting cortical bone in interactive time in 3D images acquired through High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The obtained segmentations are used to estimate cortical thickness and cortical porosity of the investigated images. Cortical thickness and Cortical porosity is computed using sphere fitting and mathematical morphological operations respectively. Qualitative comparison between the segmentations of our proposed algorithm and a previously published approach on six images volumes reveals superior smoothness properties of the level set approach. While the proposed method yields similar results to previous approaches in regions where the boundary between trabecular and cortical bone is well defined, it yields more stable segmentations in challenging regions. This results in more stable estimation of parameters of cortical bone. The proposed technique takes few seconds to compute, which makes it suitable for clinical settings.

sted, utgiver, år, opplag, sider
SPIE - International Society for Optical Engineering, 2017. artikkel-id UNSP 1013327
Serie
Proceedings of SPIE, ISSN 0277-786X ; 10133
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-211764DOI: 10.1117/12.2254240ISI: 000405564600075Scopus ID: 2-s2.0-85020302337ISBN: 978-1-5106-0711-8 (tryckt)OAI: oai:DiVA.org:kth-211764DiVA, id: diva2:1130796
Konferanse
Conference on Medical Imaging - Image Processing, FEB 12-14, 2017, Orlando, FL
Merknad

QC 20170811

Tilgjengelig fra: 2017-08-11 Laget: 2017-08-11 Sist oppdatert: 2017-08-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Jörgens, DanielWang, ChunliangSmedby, ÖrjanMoreno, Rodrigo

Søk i DiVA

Av forfatter/redaktør
Chowdhury, ManishJörgens, DanielWang, ChunliangSmedby, ÖrjanMoreno, Rodrigo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 388 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf