Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Raman and IR Spectroscopy Studies on Propane at Pressures of Up to 40 GPa
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-0599-1635
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.ORCID iD: 0000-0001-5349-2422
Show others and affiliations
2017 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 121, no 32, p. 6004-6011Article in journal (Refereed) Published
Abstract [en]

Raman and IR spectroscopy studies on propane were performed at pressures of up to 40 GPa at ambient temperatures using the diamond anvil cell technique. Propane undergoes three phase transitions at 6.4(5), 14.5(5), and 26.5(5) GPa in Raman spectroscopy and at 7.0(5), 14.0(5), and 27.0(5) GPa in IR spectroscopy. The phase transitions were identified using the Raman and IR splitting modes and the appearance or disappearance of peaks, which clearly corresponded to the changes in the frequencies of the modes as the pressure changed. Our results demonstrate the complex high-pressure behavior of solid propane.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2017. Vol. 121, no 32, p. 6004-6011
National Category
Environmental Engineering
Identifiers
URN: urn:nbn:se:kth:diva-214335DOI: 10.1021/acs.jpca.7b05492ISI: 000408180000009PubMedID: 28737910Scopus ID: 2-s2.0-85027883887OAI: oai:DiVA.org:kth-214335DiVA, id: diva2:1140514
Note

QC 20170912. QC 20200203

Available from: 2017-09-12 Created: 2017-09-12 Last updated: 2020-03-09Bibliographically approved
In thesis
1. The role of deep hydrocarbons in the global hydrocarbon budget
Open this publication in new window or tab >>The role of deep hydrocarbons in the global hydrocarbon budget
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nowadays, the issue of global warming and related environmental problems got widespread awareness among scientific society, politics, the industry as well as it has affected our everyday life. The reason for such a negative impact on the atmosphere is attributed mainly to human activities. It is thought that one of the most dangerous greenhouse gases is carbon dioxide (CO2). Nevertheless, the problem of hydrocarbon emissions began to receive particular attention due to the exponential growth of methane emissions in the atmosphere. What is the reason for such behaviour and what about other hydrocarbons, first of all, ethane, propane and butane isomers? In this work, it was proposed that geological emissions, mainly the emission from the dissociation of natural gas hydrates is one of the main reasons for the dramatic rise in hydrocarbon emissions to the atmosphere. Natural gas hydrates are not only composed of methane and water cages but have in their structure a broad range of hydrocarbons, including ethane, propane, butanes and some others. 

The purpose of this thesis is to investigate the sources of non-methane volatile hydrocarbons in the atmosphere, examine their impact on the environment and explore the correlation of hydrocarbon emissions with CO2 emissions. 

To reveal the impact of natural gas hydrates to the hydrocarbon budget it was assumed, that hydrocarbons that are contributing to the natural gas hydrate formation have deep mantle origin. To confirm this hypotheses high-pressure high temperature investigation of propane and butanes were conducted. The results of this investigation are presented in this thesis. To model extreme thermobaric conditions the diamond-anvil cell technique with two-sided laser heating was used. The method of Raman spectroscopy was applied for the analysis. 

The results received show that propane and butane isomers stable in the pressure  up to 40 GPa at ambient temperature. Propane remains stable at temperatures up to 900 K. At temperatures >900 K chemical transformations of propane are starting to occur producing mixture of light alkanes.

Abstract [sv]

I dagens samhälle har global uppvärmning och relaterade miljöproblem blivit en högst aktuell fråga inom vetenskap, politik, näringsliv samt påverkat vår vardag på individnivå. Den huvudsakliga anledningen till den negativa påverkan på atmo-sfären tillskrivs mänskliga aktiviteter. Man tror att en av de farligaste växthusgaserna är koldioxid (CO2). Ändå har problemet med kolväteutsläpp fått särskild uppmärksamhet på grund av den exponentiella tillväxten av metanutsläpp i atmosfären. Vilka är orsakerna bakom detta fenomen, samt hur står det till med andra kolvätens påverkan: etan, propan och butanisomerer? En huvudhypotes i denna avhandling är att geologiska utsläpp, främst utsläpp som har att göra med dissociation av naturgashydrat, är en av de främsta orsakerna till den dramatiska ökningen av kolväteutsläpp till atmosfären. Naturgashydrater består inte bara av metan- och vattenburar, utan har ett brett spektrum av kolväten (in-klusive etan, propan, butaner och några andra) i sin struktur. Syftet med denna avhandling är att undersöka källor till flyktiga icke-metan kolväten i atmosfären, samt undersöka deras påverkan på miljön och undersöka korrelationen mellan kolväteutsläpp och koldioxidutsläpp. För att avslöja effekterna av naturgashydrater på kolvätebudgeten, antogs det i denna avhandling att kolväten som bidrar till naturgashydratbildningen har sitt ursprung i djupmanteln. För att bekräfta denna hypotes genomfördes en högtrycksundersökning av propan och butaner under hög temperatur. Resultatet av undersökningen presenteras i denna avhandling. För att modellera extrema termobariska förhållanden tillämpas en diamant-städcellteknik med dubbelsidig laseruppvärmning. I analysen till-lämpas metoden för Raman-spektroskopi. Resultaten visar att propan och butaner är stabila i tryckområdet 3-22 GPa vid omgivningstemperatur. Propan förblir stabil vid temperaturer upp till 900 K. Vid temperaturer> 900 K börjar kemiska transformationer av propan att ge en blandning av lätta alkaner.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 181
Series
TRITA-ITM-AVL ; 2020:4
Keywords
Hydrocarbons, non-methane volatile hydrocarbons, carbon dioxide, methane, ethane, propane, butane, global warming, diamond-anvil cells, Raman spectroscopy, high pressure, high temperature, phase transition
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-267052 (URN)978-91-7873-441-2 (ISBN)
Public defence
2020-02-24, Kollegiesalen, Brinellvagen 8, Stockholm, 09:30 (English)
Opponent
Supervisors
Available from: 2020-02-03 Created: 2020-02-03 Last updated: 2020-02-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Kudryavtsev, DaniilSerovaiskii, Aleksandr YuMukhina, ElenaKutcherov, Vladimir G.

Search in DiVA

By author/editor
Kudryavtsev, DaniilSerovaiskii, Aleksandr YuMukhina, ElenaKutcherov, Vladimir G.
By organisation
Heat and Power TechnologyEnergy Technology
In the same journal
Journal of Physical Chemistry A
Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf