Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhanced Random Access:: Initial Access Load Balance in HighlyDense LTE-A Networks for Multiservice (H2H-MTC) Traffic
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab). (RS Lab)ORCID iD: 0000-0002-5164-3597
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).ORCID iD: 0000-0003-4986-6123
2017 (English)In: 2017 IEEE International Conference on Communications, IEEE, 2017, p. 1-7, article id 7996622Conference paper, Published paper (Refereed)
Abstract [en]

The Random Access (RA) procedure in existing cellular networks is not capable of functioning properly during high access load conditions. For this purpose, overload control mechanisms are needed. Most proposed mechanisms in the literature offer a tradeoff between access rate and experienced delays. However, when the maximal tolerated delay and the energy spent on retransmissions are tightly bounded, the very high access rate, targeted for 5G systems, cannot be achieved. For these situations, we propose the Delay Estimation based RA (DERA)-scheme that has the potential to meet very stringent reliability requirements, even in high access load conditions. The present work shows that this goal can be achieved only at the cost of limited additional complexity. Furthermore, we also study the optimal switchover point at which the proposed scheme moves from low-load to the high-load phase. The derived tool can also be used along with other proposed RA overload control schemes, e.g.when to invoke access class barring. The performance evaluation results show that the novel DERA scheme can significantly improve the control channels’ resource utilization along with the success rate in dense deployment scenarios.

Place, publisher, year, edition, pages
IEEE, 2017. p. 1-7, article id 7996622
Keywords [en]
Random access, PRACH, 5G, Machine to machine communications, Propagation delay, contention.
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-214960DOI: 10.1109/ICC.2017.7996622ISI: 000424872101141Scopus ID: 2-s2.0-85028360554ISBN: 978-1-4673-9000-2 (print)OAI: oai:DiVA.org:kth-214960DiVA, id: diva2:1144571
Conference
2017 IEEE International Conference on Communications, ICC 2017; Paris; France; 21 May 2017 through 25 May 2017
Projects
H2020 project METIS-II
Funder
Wireless@kthEU, Horizon 2020, H2020-ICT-2014-2
Note

QC 20171002

Available from: 2017-09-26 Created: 2017-09-26 Last updated: 2019-08-27Bibliographically approved
In thesis
1. Designing Efficient Access Control to Comply Massive-Multiservice IoT over Cellular Networks
Open this publication in new window or tab >>Designing Efficient Access Control to Comply Massive-Multiservice IoT over Cellular Networks
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Internet of Things (IoT) has come in reality to improve our living quality. Automation is embraced in all the possible business verticals that have diverse communication needs ranged from static devices’ sporadic transmission to mobile devices’ every minute transmission. Despite, there are many technologies available today to support IoT services; cellular systems can play a vital role for IoT services, like wearables, vehicular, and industrial IoT, rollout which have either mobility or security concern. 

IoT services generated traffic are foreseen as a sporadic-bursty traffic. As the cellular networks are designed to serve continuous data traffic, the existing system’s access control mechanism cannot efficiently conform to the burstiness of traffic. This limits the scope of the network scalability in terms of simultaneous serving devices’ capacity. Also, this bursty pattern can extensively increase the rate of network’s congestion incident. In this thesis, we focus on these underlying challenges to support a large number of heterogeneous IoT services with existing services over the same radio network. An important question for supporting IoT services over cellular networks is how detrimental are the effects of IoT services on other services of cellular networks. This dissertation seeks to answer this with quantitative results to indicate the real constraints of existing networks.

An important conclusion is that existing cellular system is incompetent to support the bursty arrival of massive IoT devices in terms of radio networks’ access control plane’s scalability. Therefore, this dissertation presents solutions to overcome the identified limitations of access control planes. To improve the performance of the access control plane, we incorporate a vertical core network controlled group management scheme that can assure the operator’s granular control over capillary gateways. Besides, this introduces a unique handover opportunity between cellular and capillary network vertices. Then, we present a simple but efficient initial access mechanism to overcome the initial access collision at the very early stage. Finally, we show the impact of access collision and retransmission on the initial access resource dimensioning.We present a practical traffic model that is realistic for the traffic scenario for mixed-traffic. Our presented results and analysis depict the trade-offs between access rate, retransmission and resource allocation over time and frequency.Our results reveal that with proposed schemes of the cellular system’s access control plane can be scalable and resilient to accommodate a large number of IoT devices without incurring extra delay or need of resources to the system.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2017. p. 67
Series
TRITA-ICT ; 2017:18
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-214974 (URN)978-91-7729-547-1 (ISBN)
Presentation
2017-11-10, Sal A (Sal östen Mäkitalo), Kungl Tekniska högskolan, Kistagången 16, Kista, Stockholm, 11:00 (English)
Opponent
Supervisors
Note

QC 20170928

Available from: 2017-10-02 Created: 2017-09-27 Last updated: 2017-10-04Bibliographically approved
2. Cellular-Internet-of-Things Enablers:: A Techno-Economic Study of Wide Area Networks Connectivity and Platform Solutions
Open this publication in new window or tab >>Cellular-Internet-of-Things Enablers:: A Techno-Economic Study of Wide Area Networks Connectivity and Platform Solutions
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Internet of Things (IoT) services are gradually attaining the expected service growth rate estimated by market actors. New connectivity paradigms, like the low-power wide-area network (LPWAN), have emerged to address the immediate challenges of IoT connectivity service. In addition, a plethora of new connectivity and application platforms have been developed to support IoT services. Until now, the majority of IoT services have been small scale deployments or trials. The overall cost-effectiveness and scalability aspects of IoT service provisioning are still not well understood. Hence, the growth of IoT services requires attention from a multidisciplinary perspective to address the cost-efficient scalability of IoT communication and service platforms.The technical part of this thesis focuses on the impact of multiplicity on the physical random access channel (PRACH) performance. We investigate the performance limitations of the initial access resource allocation, considering the multiplicity effect on physical layer signature detection to ensure uniform accessibility of devices. The performance evaluation reveals that MAC-protocol designed for PRACH needs to consider the realistic impact of multiplicity on signature detection. Then, we propose an efficient algorithm to detect multiplicity with a higher confidence factor. We also investigate the trade-off of random-access collision and resource allocation utilisation to meet the IoT resource utilisation requirements. We propose a pool-based resource allocation procedure that uses supervised learning to optimise the performance of early data transmission (EDT). Our analysis suggests that with this approach, EDT can handle delay constraint IoT services efficiently.The economic part of the thesis addresses the cost-structure and scalability aspects of both connectivity and platform solutions. The overall research question is: "What factors are driving the costs of IoT connectivity and platform services and why?" We have developed a framework for cost structure analysis of IoT services. We present cost structure breakdown analysis for both IoT connectivity and IoT platform services. The evaluation results discuss conditions when a platform service provider should choose a platform as a service (PaaS), and when on-premises platform deployment is viable.The technical study contributes to shaping the assessment metrics of the random-access algorithm selection. This study proposes solutions to support heterogeneous IoT solutions in cellular-IoT systems. Furthermore, the study demonstrates the potential of supervised learning to optimise resource allocation. The proposed algorithm assures service scalability in terms of user density for massive-IoT, and delay constraint IoT use cases.The economic study is helpful for telecom managers and IoT service providers to understand the cost breakdown of IoT connectivity and platform solutions under a different scenario. The cost driver of different IoT communication technologies like LPWAN, LPLAN, and C-IoT can be estimated at a high level. The framework provides a comparison base which is helpful for the actors in the IoT domain to analyse and compare different service provisioning options.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2019. p. 140
Series
TRITA-EECS-AVL ; 2019:64
Keywords
IoT, LPWAN, 5G, PRACH Contention Resolution, Multiplicity detection, Resource Allocation, Cost Structure.
National Category
Communication Systems
Research subject
Telecommunication; Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-256522 (URN)978-91-7873-276-0 (ISBN)
Public defence
2019-09-27, Sal-C, Electrum 229, SE-164 40 Kista, Sweden, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20190905

Available from: 2019-09-05 Created: 2019-08-27 Last updated: 2019-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://ieeexplore.ieee.org/document/7996622/

Authority records BETA

Markendahl, JanZander, Jens

Search in DiVA

By author/editor
Hossain, Mohammad IstiakAzari, AminMarkendahl, JanZander, Jens
By organisation
Radio Systems Laboratory (RS Lab)
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf