Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE-FEM Model
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). (Computational Technology Laboratory)ORCID-id: 0000-0002-7342-1987
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). (Computational Technology Laboratory)ORCID-id: 0000-0002-1695-8809
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST).ORCID-id: 0000-0002-5020-1631
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). (Computational Technology Laboratory)ORCID-id: 0000-0003-4256-0463
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
URN: urn:nbn:se:kth:diva-215164OAI: oai:DiVA.org:kth-215164DiVA, id: diva2:1146744
Anmärkning

QC 20171006

Tillgänglig från: 2017-10-03 Skapad: 2017-10-03 Senast uppdaterad: 2017-10-09Bibliografiskt granskad
Ingår i avhandling
1. Patient-Specific Finite Element Modeling of the Blood Flow in the Left Ventricle of a Human Heart
Öppna denna publikation i ny flik eller fönster >>Patient-Specific Finite Element Modeling of the Blood Flow in the Left Ventricle of a Human Heart
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Heart disease is the leading cause of death in the world. Therefore, numerous studies are undertaken to identify indicators which can be applied to discover cardiac dysfunctions at an early age. Among others, the fluid dynamics of the blood flow (hemodymanics) is considered to contain relevant information related to abnormal performance of the heart.This thesis presents a robust framework for numerical simulation of the fluid dynamics of the blood flow in the left ventricle of a human heart and the fluid-structure interaction of the blood and the aortic leaflets.We first describe a patient-specific model for simulating the intraventricular blood flow. The motion of the endocardial wall is extracted from data acquired with medical imaging and we use the incompressible Navier-Stokes equations to model the hemodynamics within the chamber. We set boundary conditions to model the opening and closing of the mitral and aortic valves respectively, and we apply a stabilized Arbitrary Lagrangian-Eulerian (ALE) space-time finite element method to simulate the blood flow. Even though it is difficult to collect in-vivo data for validation, the available data and results from other simulation models indicate that our approach possesses the potential and capability to provide relevant information about the intraventricular blood flow.To further demonstrate the robustness and clinical feasibility of our model, a semi-automatic pathway from 4D cardiac ultrasound imaging to patient-specific simulation of the blood flow in the left ventricle is developed. The outcome is promising and further simulations and analysis of large data sets are planned.In order to enhance our solver by introducing additional features, the fluid solver is extended by embedding different geometrical prototypes of both a native and a mechanical aortic valve in the outflow area of the left ventricle.Both, the contact as well as the fluid-structure interaction, are modeled as a unified continuum problem using conservation laws for mass and momentum. To use this ansatz for simulating the valvular dynamics is unique and has the expedient properties that the whole problem can be described with partial different equations and the same numerical methods for discretization are applicable.All algorithms are implemented in the high performance computing branch of Unicorn, which is part of the open source software framework FEniCS-HPC. The strong advantage of implementing the solvers in an open source software is the accessibility and reproducibility of the results which enhance the prospects of developing a method with clinical relevance.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2017. s. 51
Serie
TRITA-CSC-A, ISSN 1653-5723 ; 2017:21
Nyckelord
Finite element method, Arbitrary Lagrangian-Eulerian method, Fluid-Structure interaction, Contact model, parallel algorithm, blood flow, left ventricle, aortic valves, patient-specific heart model
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
urn:nbn:se:kth:diva-215277 (URN)978-91-7729-566-2 (ISBN)
Disputation
2017-10-27, Fantum, F-huset, plan 5, KTH Campus, Lindstedtsvägen 24, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)VetenskapsrådetEU, Europeiska forskningsrådet, 202984
Anmärkning

QC 20171006

Tillgänglig från: 2017-10-06 Skapad: 2017-10-05 Senast uppdaterad: 2017-10-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Spühler, Jeannette HiromiJansson, JohanJansson, NiclasHoffman, Johan

Sök vidare i DiVA

Av författaren/redaktören
Spühler, Jeannette HiromiJansson, JohanJansson, NiclasHoffman, Johan
Av organisationen
Beräkningsvetenskap och beräkningsteknik (CST)
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 130 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf