Open this publication in new window or tab >>2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This work presents a unified framework for numerical solution of Fluid Structure Interaction (FSI) and acoustics problems with focus on human phonation. The Finite Element Method is employed for numerical investigation of partial differential equations that model conservation of momentum and mass. Since the resulting system of equations is very large, an efficient open source high performance implementation is constructed and provided. In order to gain accuracy for the numerical solutions, an adaptive mesh refinement strategy is employed which reduces the computational cost in comparison to a uniform refinement. Adaptive refinement of the mesh relies on computable error indicators which appear as a combination of a computable residual and the solution of a so-called dual problem acting as weights on computed residuals. The first main achievement of this thesis is to apply this strategy to numerical simulations of a benchmark problem for FSI. This FSI model is further extended for contact handling and applied to a realistic vocal folds geometry where the glottic wave formation was captured in the numerical simulations. This is the second achievement in the presented work. The FSI model is further coupled to an acoustics model through an acoustic analogy, for vocal folds with flow induced oscillations for a domain constructed to create the vowel /i/. The comparisons of the obtained pressure signal at specified points with respect to results from literature for the same vowel is reported, which is the final main result presented.
Abstract [sv]
Detta arbete presenterar en enhetlig ram för numerisk lösning av fluid-strukturinteraktion (FSI) och akustikproblem med fokus på det mänskligatalet. En finita elementmetod används för numerisk lösning av de partiella differentialekvationer som beskriver konserveringslagar för moment och massa.Eftersom det resulterande systemet av ekvationer är mycket stort, konstruerasen öppen källkod med hög prestanda. För att få hög noggrannhet i de numeriska lösningarna används en adaptiv nätförfiningsstrategi vilken minskar beräkningskostnaden jämfört med en uniform förfining.Adaptiv förfining av nätet bygger på beräknade felindikatorer som bygger på en kombination av en beräkningsbar residual och lösningen av ett såkallat dualt problem. Den första huvudresultatet av denna avhandling är attutveckla en och validera denna strategi för en FSI-modell i ett benchmarkproblem.Denna FSI-modell utvidgas vidare för att hantera kontaktmekanik, ochanvänds sedan för en realistisk modell av stämbandsstrukturerna där denglottiska vågformationen fångas i de numeriska simuleringarna. Detta är detandra huvudresultatet i det presenterade arbetet.FSI-modellen kopplas också till en akustikmodell genom en akustisk analogi,för modell konstruerad för att skapa vokalen / i /. Den erhållna trycksignaleni ett antal punkter jämförs med resultat från litteraturen, vilket är det slutligahuvudresultatet som presenteras.
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018. p. 48
Series
TRITA-EECS-AVL ; 2018:38
Keywords
Fluid Structure Interaction, Finite Element Method, Contact Modeling, Acoustic Coupling, High Performance Computing
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics
Identifiers
urn:nbn:se:kth:diva-227252 (URN)978-91-7729-764-2 (ISBN)
Public defence
2018-05-23, F3, Sing-Sing, floor 2, KTH Kungliga Tekniska högskolan, Lindstedtsvägen 26, Stockholm, Stockholm, 10:30 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme, 308874Swedish Foundation for Strategic Research Swedish Research CouncilEU, European Research Council
Note
QC 20180509
2018-05-092018-05-082018-05-09Bibliographically approved