Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
How good can a face identifier be without learning?
KTH, Skolan för datavetenskap och kommunikation (CSC), Medieteknik och interaktionsdesign, MID.ORCID-id: 0000-0002-8673-0797
KTH, Skolan för datavetenskap och kommunikation (CSC), Medieteknik och interaktionsdesign, MID.
KTH, Skolan för datavetenskap och kommunikation (CSC), Medieteknik och interaktionsdesign, MID.ORCID-id: 0000-0003-3779-5647
2017 (engelsk)Inngår i: 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2016, Springer, 2017, Vol. 693, s. 515-533Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Constructing discriminative features is an essential issue in developing face recognition algorithms. There are two schools in how features are constructed: hand-crafted features and learned features from data. A clear trend in the face recognition community is to use learned features to replace hand-crafted ones for face recognition, due to the superb performance achieved by learned features through Deep Learning networks. Given the negative aspects of database-dependent solutions, we consider an alternative and demonstrate that, for good generalization performance, developing face recognition algorithms by using hand-crafted features is surprisingly promising when the training dataset is small or medium sized. We show how to build such a face identifier with our Block Matching method which leverages the power of the Gabor phase in face images. Although no learning process is involved, empirical results show that the performance of this “designed” identifier is comparable (superior) to state-of-the-art identifiers and even close to Deep Learning approaches.

sted, utgiver, år, opplag, sider
Springer, 2017. Vol. 693, s. 515-533
Serie
Communications in Computer and Information Science, ISSN 1865-0929 ; 693
Emneord [en]
Block matching, Controlled scenario, Deep learning, Face recognition, HD gabor phase, Learning-free
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-216323DOI: 10.1007/978-3-319-64870-5_25ISI: 000432856100025Scopus ID: 2-s2.0-85028327925ISBN: 9783319648699 (tryckt)OAI: oai:DiVA.org:kth-216323DiVA, id: diva2:1153959
Konferanse
11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2016, Rome, Italy, 27 February 2016 through 29 February 2016
Merknad

QC 20171101

Tilgjengelig fra: 2017-11-01 Laget: 2017-11-01 Sist oppdatert: 2018-07-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Zhong, YangHedman, AndersLi, Haibo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 44 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf