Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map
KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).ORCID-id: 0000-0001-9443-8772
2018 (Engelska)Ingår i: Journal of Computational and Applied Mathematics, ISSN 0377-0427, E-ISSN 1879-1778, Vol. 330, s. 177-192Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present an efficient procedure for computing resonances and resonant modes of Helmholtz problems posed in exterior domains. The problem is formulated as a nonlinear eigenvalue problem (NEP), where the nonlinearity arises from the use of a Dirichlet-to-Neumann map, which accounts for modeling unbounded domains. We consider a variational formulation and show that the spectrum consists of isolated eigenvalues of finite multiplicity that only can accumulate at infinity. The proposed method is based on a high order finite element discretization combined with a specialization of the Tensor Infinite Arnoldi method (TIAR). Using Toeplitz matrices, we show how to specialize this method to our specific structure. In particular we introduce a pole cancellation technique in order to increase the radius of convergence for computation of eigenvalues that lie close to the poles of the matrix-valued function. The solution scheme can be applied to multiple resonators with a varying refractive index that is not necessarily piecewise constant. We present two test cases to show stability, performance and numerical accuracy of the method. In particular the use of a high order finite element discretization together with TIAR results in an efficient and reliable method to compute resonances. 

Ort, förlag, år, upplaga, sidor
Elsevier, 2018. Vol. 330, s. 177-192
Nyckelord [en]
Arnoldi's method, Dirichlet-to-Neumann map, Helmholtz problem, Matrix functions, Nonlinear eigenvalue problems, Scattering resonances, Finite element method, Matrix algebra, Numerical methods, Poles, Refractive index, Resonance, Switching systems, Arnoldi's methods, Helmholtz problems, Nonlinear eigenvalue problem, Scattering resonance, Eigenvalues and eigenfunctions
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:kth:diva-216793DOI: 10.1016/j.cam.2017.08.012ISI: 000415783000014Scopus ID: 2-s2.0-85029359070OAI: oai:DiVA.org:kth-216793DiVA, id: diva2:1156703
Forskningsfinansiär
Vetenskapsrådet, 621-2012-3863 621-2013-4640
Anmärkning

QC 20171205

Tillgänglig från: 2017-11-14 Skapad: 2017-11-14 Senast uppdaterad: 2017-12-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Jarlebring, Elias

Sök vidare i DiVA

Av författaren/redaktören
Jarlebring, Elias
Av organisationen
SeRC - Swedish e-Science Research CentreMatematik (Inst.)
I samma tidskrift
Journal of Computational and Applied Mathematics
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 168 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf