Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Numerical Study of Ethanol-Water Droplet Evaporation
KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0002-1095-118X
KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0001-5886-415X
2018 (English)In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 140, no 2, article id 021401Article in journal (Refereed) Published
Abstract [en]

The present effort focuses on detailed numerical modeling of the evaporation of an ethanol-water droplet. The model intends to capture all relevant details of the process: it includes species and heat transport in the liquid and gas phases, and detailed thermophysical and transport properties, varying with both temperature and composition. Special attention is reserved to the composition range near and below the ethanol/water azeotrope point at ambient pressure. For this case, a significant fraction of the droplet lifetime exhibits evaporation dynamics similar to those of a pure droplet. The results are analyzed, and model simplifications are examined. In particular, the assumptions of constant liquid properties, homogeneous liquid phase composition and no differential volatility may not be valid depending on the initial droplet temperature.

Place, publisher, year, edition, pages
American Society of Mechanical Engineers (ASME) , 2018. Vol. 140, no 2, article id 021401
Keywords [en]
Ethanol, Evaporation, Liquids, Ambient pressures, Composition ranges, Droplet temperature, Ethanol/water azeotrope, Homogeneous liquids, Liquid and gas phasis, Liquid properties, Model simplification, Drops
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-216797DOI: 10.1115/1.4037753ISI: 000426056200003Scopus ID: 2-s2.0-85030701328OAI: oai:DiVA.org:kth-216797DiVA, id: diva2:1156811
Note

 QC 20171114

Available from: 2017-11-14 Created: 2017-11-14 Last updated: 2019-11-04Bibliographically approved
In thesis
1. Detailed simulations of droplet evaporation
Open this publication in new window or tab >>Detailed simulations of droplet evaporation
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Droplet evaporation (and condensation) is one of the most common instancesof multiphase flow with phase change, encountered in nature as well as intechnical and industrial applications. Examples include falling rain drops, fogsand mists, aerosol applications like electronic cigarettes and inhalation drugdelivery, engineering applications like spray combustion, spray wet scrubbing orgas absorption, spray drying, flame spray pyrolysis.Multiphase flow with phase change is a challenging topic due to the inter-twined physical phenomena that govern its dynamics. Numerical simulation isan outstanding tool that enables us to gain insight in the details of the physics,often in cases when experimental studies would be too expensive, impracticalor limited.In the present work we focus on simulation of the evaporation of smalldroplets. We perform simulation of evaporation of a pure and two−componentdroplet, that includes detailed thermodynamics and variable physical andtransport properties. Some of the conclusions drawn include the importance ofenthalpy transport by species diffusion in the thermal budget of the system, andthe identification and characterization of evaporating regimes for an azeotropicdroplet.In the second part we develop a method based on the immersed boundaryconcept for interface resolved numerical simulation of laminar and turbulentflows with a large number of spherical droplets that undergo evaporation orcondensation.

Abstract [sv]

Droppförångning (och kondensation) är en av de vanligaste fallen av flerfasflöde med fasförändring, både i naturen och i tekniska och industriella tillämpningar. Exempel är fallande regndroppar, dimma, aerosol-tillämpningar som elektroniskacigaretter och läkemedelsleverans via inandning, tekniska tillämpningar som sprayförbränning, våtskrubbning med sprayning, gasabsorption, spraytorkning samt flammsprayspyrolys. Flerfasflöde med fasförändring är ett utmanande ämne på grund av de sammanflätade fysikaliska fenomen som styr dess dynamik. Numerisk simulering är ett utmärkt verktyg som gör det möjligt för oss att få insikt i detaljerna i fysiken, ofta i fall då experimentella studier skulle vara för dyra, opraktiska eller begränsade. I det nuvarande arbetet fokuserar vi på simulering av förångning av små droppar. Vi utför simulering av förångning av en ren och två−komponentdroppe, som inkluderar detaljerad termodynamik samt varierande fysikaliska och transportegenskaper. Några av de slutsatser som dras inbegriper betydelsen av entalpitransport genom diffusion av olika ämnen i systemets termiska budget samt identifieringen och karakterisering av förångningsregimer för en azeotropiskdroppe. I den andra delen utvecklar vi en metod baserad på det nedsänkta rand konceptet för gränssnittskompletterad numerisk simulering av laminära och turbulenta flöden med ett stort antal sfäriska droppar som genomgår förångning eller kondensering.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017
Series
TRITA-MEK, ISSN 0348-467X
Keywords
droplet, evaporation, phase change, multicomponent, immersed boundary, droppe, förångning, fasövergång, multikomponent, nedsånkt rand
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:kth:diva-217614 (URN)978-91-7729-617-1 (ISBN)
Presentation
2017-12-18, E52, Osquars backe 14, Stockholm, 13:00 (English)
Supervisors
Note

QC 20171117

Available from: 2017-11-17 Created: 2017-11-15 Last updated: 2019-11-04Bibliographically approved
2. Advances in droplet evaporation
Open this publication in new window or tab >>Advances in droplet evaporation
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Droplet evaporation (and condensation) is one of the most common instances of multiphase flow with phase change, encountered in nature as well as in technical applications. Examples include falling rain drops, fogs and mists, aerosol applications like electronic cigarettes and inhalation drug delivery, and engineering applications like spray combustion, spray wet scrubbing or gas absorption, spray drying, flame spray pyrolysis. Multiphase flow with phase change is a challenging topic due to the intertwined physical phenomena that govern its dynamics. Numerical simulation is a valuable tool that enables us to gain insight in the details of the physics, often in cases where experimental studies would be too expensive, impractical or limited. In the present work, the focus is on the evaporation of small spherical droplets. Simulation of the evaporation of a pure and two−component droplet, in a stagnant flow, with the inclusion of detailed thermodynamics and variable physical and transport properties, shows the importance of enthalpy transport by species diffusion in the thermal budget of the system, and allows the identification and characterization of evaporating regimes for an azeotropic droplet. A new method for the interface resolved numerical simulation of laminar and turbulent flows with a large number of spherical droplets that undergo evaporation or condensationon, based on the immersed boundary concept, is developed. Validation with experimental data of pure and two−component droplets evaporating in homogeneous isotropic turbulence is conducted. The method is employed for the direct numerical simulation of spray evaporation in a turbulent channel flow, whereby mechanisms of spray migration and turbulence modulation are revealed, and a scaling of the evaporation enhancement with the turbulence is found. The sensitivity of the zero-dimensional multicomponent droplet evaporation model, used for general purpose multiphase flow calculations, to its many model parameters is analysed by uncertainty quantification, providing useful guidelines for the design and operation of droplet evaporation experiments and simulations.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2019. p. 41
Series
TRITA-SCI-FOU ; 53
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-263228 (URN)978-91-7873-361-3 (ISBN)
Public defence
2019-11-29, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20191108

Available from: 2019-11-08 Created: 2019-11-04 Last updated: 2019-11-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lupo, GiandomenicoDuwig, Christophe

Search in DiVA

By author/editor
Lupo, GiandomenicoDuwig, Christophe
By organisation
Mechanics
In the same journal
Journal of engineering for gas turbines and power
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 790 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf