Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
In situ AFM study of localized corrosion processes of tempered AISI 420 martensitic stainless steel: Effect of secondary hardening
KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, nr 13, s. C810-C818Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The effect of secondary hardening of tempered AISI 420 martensitic stainless steel on the corrosion behavior in aqueous 0.01 M NaCl has been studied, in-situ, using atomic force microscopy (AFM) to monitor real-time localized corrosion processes. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses confirmed the presence of undissolved and secondary carbides (Cr23C6, Cr7C3, Cr3C2, Cr3C, Cr2C, and CrC) as well as retained austenite, all finely dispersed in the tempered martensitic matrix. Electrochemical measurements, consisted of monitoring of the open-circuit potential vs. time and cyclic polarization in 0.01 M NaCl solution, were performed to evaluate the passivity and its breakdown, and it was seen that initiation sites for localized corrosion were predominantly peripheral sites of carbides. In-situ AFM measurements revealed that there was a sequence for localized corrosion in which the neighboring matrix next to secondary carbides dissolved first, followed by corrosive attack on regions adjacent to undissolved carbides. Tempering at 500◦C reduced the corrosion resistance and the ability to passivate in comparison to tempering at 250◦C.

Ort, förlag, år, upplaga, sidor
Electrochemical Society, 2017. Vol. 164, nr 13, s. C810-C818
Nationell ämneskategori
Korrosionsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-218312DOI: 10.1149/2.1261713jesISI: 000418409800096Scopus ID: 2-s2.0-85033663829OAI: oai:DiVA.org:kth-218312DiVA, id: diva2:1160508
Anmärkning

QC 20171127

Tillgänglig från: 2017-11-27 Skapad: 2017-11-27 Senast uppdaterad: 2018-11-26Bibliografiskt granskad
Ingår i avhandling
1. An Experimental Study to Understand the Localized Corrosion and Environment-Assisted Cracking Behavior of AISI 420-Martensitic Stainless Steel
Öppna denna publikation i ny flik eller fönster >>An Experimental Study to Understand the Localized Corrosion and Environment-Assisted Cracking Behavior of AISI 420-Martensitic Stainless Steel
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Motivation and aim: Currently steel molds are designed with cooling channels to reduce the solidification time of molten plastic within the mold to improve the productivity. As water is generally used as the cooling medium, corrosion and environment-assisted cracking (EAC) leading towards the dysfunction of mold, can increase the production downtime. This was observed in some cases. Hence the primary aim of this thesis is to study the corrosion and EAC behavior of a martensitic stainless steel (MSS) in Cl containing environment to further the current understanding thereby to optimize the existing alloy/s and to design and develop new steel grades.

Methods: The MSS had been austenitised at 1020°C, and subsequently quenched in nitrogen gas at fast (3°C/s), and slow quenching rates (0.6°C/s). Then tempering was done at 250°C, and 500°C, respectively, twice for two hours. Microstructure was predicted and characterized using Thermocalc simulation, dilatometry, light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy (AFM). Localized corrosion behavior was characterized using standard salt spray test, electrochemical experiments, scanning Kelvin probe force microscopy, in-situ AFM. Stress relaxation associated with 250°C, and 500°C tempering was characterized by a new method for both fast (FQ) and slow quenched (SQ) conditions. Based on the %stress relaxation, initial loading levels were altered and the corresponding environment-assisted cracking behavior was investigated at two different loading levels.

Results: Samples tempered at 250ºC exhibited higher corrosion resistance than samples tempered at 500ºC in both FQ and SQ conditions. FQ samples exhibited higher corrosion resistance with an ability to passivate than SQ samples when tempered at 250ºC. However, when tempered at 500°C, the corrosion resistance was poor for both FQ and SQ samples. These observed differences clearly indicate the strong influence of microstructure on the corrosion behavior of the material. There are preferential active sites in the microstructure, which dictate the sequence of corrosion events. Secondary Cr-rich carbides formed during 500ºC tempering apparently deteriorate the corrosion resistance in spite of their smaller sizes as compared to undissolved Cr-rich carbides.  Stress relaxation increased with increasing tempering temperature. In the FQ condition, 250°C temper exhibited superior EAC resistance than 500°C temper in both loading scenarios, indicating the dominant role of corrosion resistance in delaying the failure. Whereas in SQ condition, 500°C temper exhibited superior EAC resistance than 250°C temper in both loading scenarios, indicating the dominant role of applied stress in delaying the failure. The pitting susceptibility increased with increasing applied stress on both FQ and SQ conditions. The fractographic features suggest that the mechanism of failure was mixed mode involving both active path dissolution and hydrogen embrittlement, which could have been operative during the failure in varying magnitude in respective scenarios. 

Conclusions: Based on this research work, it can be concluded that, in order to have a longer service life, both the localized corrosion behavior and the residual stresses are to be considered while recommending tempering temperature to mold makers.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2018. s. 128
Serie
TRITA-CBH-FOU ; 2018:56
Nationell ämneskategori
Korrosionsteknik
Forskningsämne
Kemi
Identifikatorer
urn:nbn:se:kth:diva-239324 (URN)978-91-7873-007-0 (ISBN)
Disputation
2018-12-14, F3, Lindstedtsvågen 26, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20181121

Tillgänglig från: 2018-11-21 Skapad: 2018-11-20 Senast uppdaterad: 2018-11-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Örnek, CemPan, Jinshan

Sök vidare i DiVA

Av författaren/redaktören
Anantha, Krishnan HariramabadranÖrnek, CemPan, Jinshan
Av organisationen
Yt- och korrosionsvetenskap
I samma tidskrift
Journal of the Electrochemical Society
Korrosionsteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 653 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf