Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
New challenges to study heterogeneity in cancer redox metabolism
KTH, Centra, Science for Life Laboratory, SciLifeLab.
KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-4858-8056
KTH, Centra, Science for Life Laboratory, SciLifeLab.
2017 (engelsk)Inngår i: Frontiers in Cell and Developmental Biology, ISSN 2296-634X, Vol. 5, nr JUL, artikkel-id 65Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine. © 2017 Benfeitas, Uhlen, Nielsen and Mardinoglu.

sted, utgiver, år, opplag, sider
Frontiers Media S.A. , 2017. Vol. 5, nr JUL, artikkel-id 65
Emneord [en]
Cancer heterogeneity, Personalized medicine, Reactive oxygen species, Redox biology, Systems biology
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-216288DOI: 10.3389/fcell.2017.00065ISI: 000455238900065Scopus ID: 2-s2.0-85026835225OAI: oai:DiVA.org:kth-216288DiVA, id: diva2:1164593
Merknad

QC 20171211

Tilgjengelig fra: 2017-12-11 Laget: 2017-12-11 Sist oppdatert: 2020-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Uhlén, MathiasNielsen, Jens

Søk i DiVA

Av forfatter/redaktør
Benfeitas, RuiUhlén, MathiasNielsen, Jens
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 150 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf