Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Artificial intelligence for analyzing orthopedic trauma radiographs Deep learning algorithms-are they on par with humans for diagnosing fractures?
KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.ORCID-id: 0000-0002-4266-6746
KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. Danderyd Hosp, Karolinska Inst, Sweden.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 88, nr 6, s. 581-586Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.

Ort, förlag, år, upplaga, sidor
2017. Vol. 88, nr 6, s. 581-586
Nationell ämneskategori
Ortopedi
Identifikatorer
URN: urn:nbn:se:kth:diva-220304DOI: 10.1080/17453674.2017.1344459ISI: 000416605900005PubMedID: 28681679OAI: oai:DiVA.org:kth-220304DiVA, id: diva2:1168857
Anmärkning

QC 20171221

Tillgänglig från: 2017-12-21 Skapad: 2017-12-21 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Maki, AtsutoRazavian, Ali Sharif

Sök vidare i DiVA

Av författaren/redaktören
Maki, AtsutoRazavian, Ali Sharif
Av organisationen
Robotik, perception och lärande, RPL
I samma tidskrift
Acta Orthopaedica
Ortopedi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 93 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf