kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An exploration of topological properties of high-frequency one-dimensional financial time series data using TDA
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
An exploration of topological properties of high-frequency one-dimensional financial time series data using TDA (Swedish)
Abstract [en]

Topological data analysis has been shown to provide novel insight in many natural sciences. To our knowledge, the area is however relatively unstudied on financial data. This thesis explores the use of topological data analysis on one dimensional financial time series. Takens embedding theorem is used to transform a one dimensional time series to an $m$-dimensional point cloud, where $m$ is the embedding dimension. The point cloud of the time series represents the states of the dynamical system of the one dimensional time series. To see how the topology of the states differs in different partitions of the time series, sliding window technique is used. The point cloud of the partitions is then reduced to three dimensions by PCA to allow for computationally feasible persistent homology calculation. Synthetic examples are shown to illustrate the process. Lastly, persistence landscapes are used to allow for statistical analysis of the topological features. The topological properties of financial data are compared with quantum noise data to see if the properties differ from noise. Complexity calculations are performed on both datasets to further investigate the differences between high-frequency FX data and noise. The results suggest that high-frequency FX data differs from the quantum noise data and that there might be some property other than mutual information of financial data which topological data analysis uncovers.

Abstract [sv]

    Topologisk dataanalys har visat sig kunna ge ny insikt i många naturvetenskapliga discipliner. Till vår kännedom är tillämpningar av metoden på finansiell data relativt ostuderad. Uppsatsen utforskar topologisk dataanalys på en endimensionell finanstidsserie. Takens inbäddningsteorem används för att transformera en endimensionell tidsserie till ett $m$-dimensionellt punktmoln, där $m$ är inbäddningsdimensionen. Tidsseriens punktmoln representerar tillstånd hos det dynamiska systemet som associeras med den endimensionella tidsserien. För att undersöka hur topologiska tillstånd varierar inom tidsserien används fönsterbaserad teknik för att segmentera den endimensionella tidsserien. Segmentens punktmoln reduceras till 3D med PCA för att göra ihållande homologi beräkningsmässigt möjligt. Syntetiska exempel används för att illustrera processen. En jämförelse mellan topologiska egenskaper hos finansiell tidseries och kvantbrus utförs för att se skillnader mellan dessa. Även komplexitetsberäkningar utförs på dessa data set för att vidare utforska skillnaderna mellan kvantbrus och högfrekventa FX-data. Resultatet visar på att högfrekvent FX-data skiljer sig från kvantbrus och att det finns egenskaper förutom gemensam information hos finansiella tidsserier som topologisk dataanalys visar på.

Place, publisher, year, edition, pages
2017.
Series
TRITA-MAT-E ; 2017:80
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-220355OAI: oai:DiVA.org:kth-220355DiVA, id: diva2:1169943
Subject / course
Financial Mathematics
Educational program
Master of Science - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2017-12-31 Created: 2017-12-31 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(3874 kB)1758 downloads
File information
File name FULLTEXT01.pdfFile size 3874 kBChecksum SHA-512
bf760c8fa2d3abb1f8c4dc2e0d5197b0b4dd4e39b8f25a849eefbef26b6977435fa3cb781f66e45773ae0c253ab9211c985d85f84627f49015c37b846efd447e
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1758 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 4052 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf