Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using conformal prediction to prioritize compound synthesis in drug discovery
Predictive Compound ADME & Safety, Drug Safety & Metabolism, AstraZeneca IMED Biotech Unit, Mölndal, Sweden.
Predictive Compound ADME & Safety, Drug Safety & Metabolism, AstraZeneca IMED Biotech Unit, Mölndal, Sweden.
Department of Computer and Systems Sciences, Stockholm University, Sweden.
Department of Information Technology, University of Borås, Sweden.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Proceedings of Machine Learning Research: Volume 60: Conformal and Probabilistic Prediction and Applications, 13-16 June 2017, Stockholm, Sweden / [ed] Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, and Harris Papadopoulos, 2017, s. 174-184Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The choice of how much money and resources to spend to understand certain problems is of high interest in many areas. This work illustrates how computational models can be more tightly coupled with experiments to generate decision data at lower cost without reducing the quality of the decision. Several different strategies are explored to illustrate the trade off between lowering costs and quality in decisions.

AUC is used as a performance metric and the number of objects that can be learnt from is constrained. Some of the strategies described reach AUC values over 0.9 and outperforms strategies that are more random. The strategies that use conformal predictor p-values show varying results, although some are top performing.

The application studied is taken from the drug discovery process. In the early stages of this process compounds, that potentially could become marketed drugs, are being routinely tested in experimental assays to understand the distribution and interactions in humans.

Ort, förlag, år, upplaga, sidor
2017. s. 174-184
Nyckelord [en]
Drug discovery, Conformal Prediction, ADME properties, Decision support
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-221445OAI: oai:DiVA.org:kth-221445DiVA, id: diva2:1175353
Konferens
The 6th Symposium on Conformal and Probabilistic Prediction with Applications, (COPA 2017), 13-16 June, 2017, Stockholm, Sweden
Anmärkning

QC 20180122

Tillgänglig från: 2018-01-17 Skapad: 2018-01-17 Senast uppdaterad: 2018-01-22Bibliografiskt granskad

Open Access i DiVA

fulltext(242 kB)36 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 242 kBChecksumma SHA-512
646068f171a6a8ccf17e206a091062d5552a17013175424ab8a4023bcb67822e4baff3740240b2e29657b6f7282e095d616b88e4cf0a54aa6947559414082c7e
Typ fulltextMimetyp application/pdf

Övriga länkar

Published version

Sök vidare i DiVA

Av författaren/redaktören
Boström, HenrikLöfström, TuveJohansson, Ulf
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 36 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 544 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf