Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A numerical and experimental study to investigate convective heat transfer and associated cutting temperature distribution in single point turning
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion.ORCID-id: 0000-0002-5960-2159
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 94, nr 1-4, s. 897-910Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

During the metal cutting operation, heat generation at the cutting interface and the resulting heat distribution among tool, chip, workpiece, and cutting environment has a significant impact on the overall cutting process. Tool life, rate of tool wear, and dimensional accuracy of the machined surface are linked with the heat transfer. In order to develop a precise numerical model for machining, convective heat transfer coefficient is required to simulate the effect of a coolant. Previous literature provides a large operating range of values for the convective heat transfer coefficients, with no clear indication about the selection criterion. In this study, a coupling procedure based on finite element (FE) analysis and computational fluid dynamics (CFD) has been suggested to obtain the optimum value of the convective heat transfer coefficient. In this novel methodology, first the cutting temperature was attained from the FE-based simulation using a logical arbitrary value of convective heat transfer coefficient. The FE-based temperature result was taken as a heat source point on the solid domain of the cutting insert and computational fluid dynamics modeling was executed to examine the convective heat transfer coefficient under similar condition of air interaction. The methodology provided encouraging results by reducing error from 22 to 15% between the values of experimental and simulated cutting temperatures. The methodology revealed encouraging potential to investigate convective heat transfer coefficients under different cutting environments. The incorporation of CFD modeling technique in the area of metal cutting will also benefit other peers working in the similar areas of interest.

Ort, förlag, år, upplaga, sidor
SPRINGER LONDON LTD , 2018. Vol. 94, nr 1-4, s. 897-910
Nyckelord [en]
Finite element modeling, Cutting temperature, Computational fluid dynamics, Convective heat transfer coefficient, Machining, Titanium alloys
Nationell ämneskategori
Robotteknik och automation
Identifikatorer
URN: urn:nbn:se:kth:diva-221865DOI: 10.1007/s00170-017-0975-9ISI: 000419114100070Scopus ID: 2-s2.0-85028012749OAI: oai:DiVA.org:kth-221865DiVA, id: diva2:1179072
Anmärkning

QC 20180131

Tillgänglig från: 2018-01-31 Skapad: 2018-01-31 Senast uppdaterad: 2018-01-31Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Rashid, AmirNicolescu, Mihai

Sök vidare i DiVA

Av författaren/redaktören
Rashid, AmirNicolescu, Mihai
Av organisationen
Industriell produktion
I samma tidskrift
The International Journal of Advanced Manufacturing Technology
Robotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 64 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf