Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy efficient optimization of a sleep mode strategy in heterogeneous cellular networks
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab).ORCID iD: 0000-0003-0525-4491
2017 (English)In: EuCNC 2017 - European Conference on Networks and Communications, Institute of Electrical and Electronics Engineers (IEEE), 2017, article id 7980740Conference paper, Published paper (Refereed)
Abstract [en]

As base stations (BS) are responsible for the large amount of energy consumed in cellular networks, energy efficient BS sleep mode techniques have the potential to save a significant amount of energy. However, assuming that BSs are able to alternate between sleeping and active states as frequently as possible may have a negative impact on network reliability, shortening BS lifetime. In this paper we propose a multiobjective optimization framework aimed at minimizing the power consumption and number of BS sleep mode switchings in heterogeneous cellular networks (HetNet), by jointly considering Quality of Service (QoS) requirements. We focus on the HetNet scenario in which macro and micro cells coexist. The Mixed Integer Quadratic Programming (MIQP) optimization technique is used to minimize the power consumption together with the number of BS sleep mode operations of both macro and micro cells. The trade-off between power consumption, sleep mode switchings and performance of the network is shown for different energy saving solutions. Results show that the proposed optimization can guarantee QoS target throughput for users and significant reduction of 50% for macro and 73% for micro BS respectively daily number of switchings, while still achieving 8% savings in terms of daily energy consumption.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2017. article id 7980740
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-222057DOI: 10.1109/EuCNC.2017.7980740Scopus ID: 2-s2.0-85039954240ISBN: 9781538638736 OAI: oai:DiVA.org:kth-222057DiVA, id: diva2:1179143
Conference
2017 European Conference on Networks and Communications, EuCNC 2017, Oulu, Finland, 12 June 2017 through 15 June 2017
Note

QC 20180131

Available from: 2018-01-31 Created: 2018-01-31 Last updated: 2018-01-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Cavdar, Cicek

Search in DiVA

By author/editor
Cavdar, Cicek
By organisation
Radio Systems Laboratory (RS Lab)
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf