Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The inclusion of vehicle shape and aerodynamic drag estimations within the life cycle energy optimisation methodology
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0002-1848-7924
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0003-0176-5358
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0003-1855-5437
University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.ORCID-id: 0000-0002-4273-9490
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 84, s. 902-907Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The present work describes a widening of the scope of the Life Cycle Energy Optimisation (LCEO) methodology with the addition of shape-related design variables. They describe the curvature of a vehicle which impacts its aerodynamic drag and therewith its operational energy demand. Aerodynamic drag is taken into account through the estimation of the drag coefficient of the vehicle body shape using computational fluid dynamics simulations. Subsequently, the aforementioned coefficient is used to calculate the operational energy demand associated with the vehicle. The methodology is applied to the design of the roof of a simplified 2D vehicle model which is both mechanically and geometrically constrained. The roof is modelled as a sandwich structure with its design variables consisting of the material compositions of the different layers, their thicknesses as well as the shape variables. The efficacy of the LCEO methodology is displayed through its ability to deal with the arising functional conflicts while simultaneously leveraging the design benefits of the underlying functional alignments. On average, the optimisation process resulted in 2.5 times lighter and 4.5 times less life cycle energy-intensive free shape designs. This redesign process has also underlined the necessity of defining an allocation strategy for the energy necessary to overcome drag within the context of vehicle sub-system redesign.

Ort, förlag, år, upplaga, sidor
Elsevier, 2019. Vol. 84, s. 902-907
Nyckelord [en]
life cycle energy optimisation; vehicle design; aerodynamic drag; functional conflicts
Nationell ämneskategori
Farkostteknik Naturresursteknik Design
Identifikatorer
URN: urn:nbn:se:kth:diva-223377DOI: 10.1016/j.procir.2019.04.270Scopus ID: 2-s2.0-85076745079OAI: oai:DiVA.org:kth-223377DiVA, id: diva2:1183815
Anmärkning

QC 20190906

Tillgänglig från: 2018-02-19 Skapad: 2018-02-19 Senast uppdaterad: 2020-03-09Bibliografiskt granskad
Ingår i avhandling
1. Advancing the life cycle energy optimisation methodology
Öppna denna publikation i ny flik eller fönster >>Advancing the life cycle energy optimisation methodology
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The Life Cycle Energy Optimisation (LCEO) methodology aims at finding a design solution that uses a minimum amount of cumulative energy demand over the different phases of the vehicle's life cycle, while complying with a set of functional constraints. This effectively balances trade-offs, and therewith avoids sub-optimal shifting between the energy demand for the cradle-to-production of materials, operation of the vehicle, and end-of-life phases. This work further develops the LCEO methodology and expands its scope through three main methodological contributions which, for illustrative purposes, were applied to a vehicle sub-system design case study.

An End-Of-Life (EOL) model, based on the substitution with a correction factor method, is included to estimate the energy credits and burdens that originate from EOL vehicle processing. Multiple recycling scenarios with different levels of assumed induced recyclate material property degradation were built, and their impact on the LCEO methodology's outcomes was compared to that of scenarios based on landfilling and incineration with energy recovery. The results show that the inclusion of EOL modelling in the LCEO methodology can alter material use patterns and significantly effect the life cycle energy of the optimal designs.

Furthermore, the previous model is expanded to enable holistic vehicle product system design with the LCEO methodology. The constrained optimisation of a vehicle sub-system, and the design of a subset of the processes which are applied to it during its life cycle, are simultaneously optimised for a minimal product system life cycle energy. In particular, a subset of the EOL processes' parameters are considered as continuous design variables with associated barrier functions that control their feasibility. The results show that the LCEO methodology can be used to find an optimal design along with its associated ideal synthetic EOL scenario. Moreover, the ability of the method to identify the underlying mechanisms enabling the optimal solution's trade-offs is further demonstrated.

Finally, the functional scope of the methodology is expanded through the inclusion of shape-related variables and aerodynamic drag estimations. Here, vehicle curvature is taken into account in the LCEO methodology through its impact on the aerodynamic drag and therewith its related operational energy demand. In turn, aerodynamic drag is considered through the estimation of the drag coefficient of a vehicle body shape using computational fluid dynamics simulations. The aforementioned coefficient is further used to estimate the energy required by the vehicle to overcome aerodynamic drag. The results demonstrate the ability of the LCEO methodology to capitalise on the underlying functional alignment of the structural and aerodynamic requirements, as well as the need for an allocation strategy for the aerodynamic drag energy within the context of vehicle sub-system redesign.

Overall, these methodological developments contributed to the exploration of the ability of the LCEO methodology to handle life cycle and functional trade-offs to achieve life cycle energy optimal vehicle designs.

Abstract [sv]

Livscykelenergioptimerings-metodologin (LCEO) syftar till att hitta en designlösning som använder en minimal mängd av energi ackumulerat över de olika faserna av en produkts (i detta arbete i formen av ett fordon) livscykel, samtidigt som den uppfyller en förutbestämd uppsättning funktionella begränsningar. Genom detta kan avvägningar balanseras effektivt, och därmed undviks suboptimala förskjutningar mellan energibehovet för vagga-till-produktion av material, fordonets användningsfas samt hantering av det uttjänta fordonet, på engelska kallad End-Of-Life (EOL). Detta arbete vidareutvecklar LCEO-metodologin och utvidgar dess omfattning genom tre huvudsakliga metodologiska bidrag, som, för illustrativa syften, har applicerats på en fallstudie av ett fordons sub-systemdesign.

En EOL-modell baserad på substitution med korrigeringsfaktorer, är inkluderad för att uppskatta energikrediter och bördor som härrör från hanteringen av det uttjänta fordonet. Flera olika scenarier som beskriver återvinning med olika nivåer av antagen degradering av egenskaper hos de återvunna materialen har definierats, och deras respektive LCEO utfall har jämförts med motsvarande resultat för scenarier baserade på deponering och förbränning med energiåtervinning. Resultaten visar att införandet av en EOL-modell i LCEO-metodologin kan ändra flöden och mönster kring materialanvändning och har en signifikant påverkan på den totala livscykelenergin i de optimala fordonsdesignen

Då valet av EOL-modell har signifikans för LCEO utfallet, har de föregående, statiska modellerna kompletterats med en utvidgning mot en mer holistisk systemstudie utifrån LCEO. I denna utvidgning studeras frågor kring optimerade produktsystem, framförallt avseende en delmängd av EOL processernas parametrar som har inkluderats i form av kontinuerliga designvariabler med antagna barriärfunktioner som modellerar deras genomförbarhet. Resultaten visar att LCEO kan användas för att finna den optimala designen av en fordonskomponent tillsammans med dess associerade, ideala, syntetiska EOL-scenario. Dessutom demonstreras metodens förmåga att identifiera de underliggande mekanismer som möjliggör den optimala lösningens avvägningar.

För att utöka komplexiteten i de ansatta funktionella begränsningarna har även form-relaterade variabler och aerodynamiska motståndsberäkningar tagits med. I det här fallet används krökningen på den studerade fordonskomponenten som ytterligare en variabel i LCEO analyser, med dess inverkan på det aerodynamiska motståndet och i och med detta variationer i användningsfasens energibehov. I detta fallet har det aerodynamiska motståndet tagits med i analysen genom uppskattning av motståndskoefficienten av en fordonskomponent framtagen genom strömningsmekaniska beräkningar. Denna uppskattning används sedan för att modellera den energi som krävs av fordonet för att övervinna det aerodynamiska luftmotståndet. I detta sammanhang visas också på behovet av en strategi för allokering av den aerodynamiska motståndsenergin hos en sub-komponent i relation till helheten, när fokus ligger på design av ett sub-system hos ett fordon. Resultaten visar att LCEO beskriver den underliggande funktionella synergin mellan de ansatta strukturella och de aerodynamiska kraven.

Detta arbete bidrar till att LCEO utvecklas i flera olika avseenden som utgör väsentliga steg mot en pro-aktiv metod som kan hantera livscykel- och funktionella avvägningar i en optimal fordonsdesign ur ett livscykelenergiperspektiv.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2019. s. 76
Serie
TRITA-SCI-FOU ; 2019:60
Nyckelord
life cycle energy, vehicle design, optimisation, functional conflicts, livscykelenergi, fordonsdesign, optimering, tvär-funktionella konflikter
Nationell ämneskategori
Farkostteknik Naturresursteknik Design
Forskningsämne
Farkostteknik
Identifikatorer
urn:nbn:se:kth:diva-265556 (URN)978-91-7873-408-5 (ISBN)
Presentation
2020-01-24, E2, Lindstedtsvägen 3, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-12-18 Skapad: 2019-12-13 Senast uppdaterad: 2019-12-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Bouchouireb, HamzaO'Reilly, Ciarán J.Göransson, PeterSchöggl, Josef-PeterBaumgartner, Rupert J.Potting, José
Av organisationen
Farkost och flygVinnExcellence Center for ECO2 Vehicle designSkolan för arkitektur och samhällsbyggnad (ABE)
I samma tidskrift
Procedia CIRP
FarkostteknikNaturresursteknikDesign

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1708 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf