Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor
KTH, Skolan för teknikvetenskap (SCI), Mekanik. Nanyang Technological University, Singapore.
2018 (Engelska)Ingår i: Aerospace Science and Technology, ISSN 1270-9638, E-ISSN 1626-3219, Vol. 74, s. 81-92Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this work, 3D numerical investigations of a trapped vortex combustor operated in different swirling flow conditions are performed by solving Reynolds-averaged Navier-Stokes equations with Reynolds-stress model. Emphasis is placed on the non-reacting flowfield characteristics and the stability of the locked vortex. Validation is performed first by comparing the present results with experimental data available. It shows that the Reynolds-stress model can provide good predictions for flows with a swirl number up to 0.98. It is also found that the cavity vortex can be trapped well in flows with different swirl numbers. To further study the "locked" vortices, flow disturbances are introduced to the trapped vortex combustor via suddenly increasing swirl number from 0.6 to 0.98. The transient simulation results reveal that the cavity vortex is highly resistant to the flow disturbances and is still well trapped in the cavity, while vortex shedding of the conventional breakdown vortex is observed in the presence of the flow disturbances. Turbulence intensity and kinetic energy are found to be significantly increased by approximately 300%, which indicates that the fuel-air mixing can be dramatically improved. This study shows that the swirling trapped vortex combustor is an alternative promising robust and efficient combustor concept.

Ort, förlag, år, upplaga, sidor
Elsevier Masson SAS , 2018. Vol. 74, s. 81-92
Nyckelord [en]
Axial Throughflow, Rotating Cavity, Cooling Air, Flow, Computation, Simulation, Expansion, Breakdown, Model
Nationell ämneskategori
Materialteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-224689DOI: 10.1016/j.ast.2018.01.006ISI: 000426332900009Scopus ID: 2-s2.0-85041479457OAI: oai:DiVA.org:kth-224689DiVA, id: diva2:1193085
Anmärkning

QC 20180326

Tillgänglig från: 2018-03-26 Skapad: 2018-03-26 Senast uppdaterad: 2018-03-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Chen, Song

Sök vidare i DiVA

Av författaren/redaktören
Chen, SongZhao, Dan
Av organisationen
Mekanik
I samma tidskrift
Aerospace Science and Technology
Materialteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 100 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf