Open this publication in new window or tab >>2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
The durability of concrete is of major concern in all types of concrete structures where the combined effect of exposure conditions and the type and quality of the concrete material usually determines the rate of degradation. Furthermore, there are synergy effects between different deterioration mechanisms, which means that the combined rate of degradation is higher than the sum of the individual rates of each mechanism. Therefore, to accurately predict the residual service life of existing structures or when designing new structures, it is essential to consider all these aspects. This means that various chemical and physical processes, as well as how these interact, must be taken into account in models aiming to be used for service life predictions.
This thesis presents the first part of a research project with the aim to investigate common deterioration mechanisms of concrete in hydraulic structures, and to improve the knowledge how these and other related phenomena can be described using mathematical models. The objective is also to study how different mechanisms interact and to find suitable approaches to account for these interactions in the models. To this end, a literature survey on commonly detected damage in hydraulic structures is presented. In addition, it also addresses in what types of and where in hydraulic structures the various damage types are usually observed. The mathematical models presented in this part of the project are focused on long-term water absorption in air-entrained concrete as well as on freezing of partially saturated air-entrained concrete. Both models are based on a multiphase description of concrete and poromechanics to describe the coupled hygro-thermo-mechanical behaviour. The thesis also presents some of the basic concepts of multiphase modelling of porous media, including discretization of the models using the finite element method (FEM). Furthermore, it covers the simplifications that are usually introduced in the general macroscopic balance equations for mass, energy and linear momentum when modelling cement-based materials.
To verify the developed models and to show their capabilities, simulation results are compared with experimental data, in situ measurements and other simulations from the literature. The results indicate that both models perform well and can be used to predict long-term moisture conditions in hydraulic structures as well as freezing-induced strains in partially saturated air-entrained concrete, respectively. Even though no interactions with other deterioration mechanisms are included in the models, the development and use of these have given insights to which parameters that are important to consider in such extensions. Furthermore, based on the insights gained, the complexity of describing the full interactions between several mechanisms in mathematical models is also discussed. It is concluded that models aiming to be used for service life predictions of hydraulic structures in day-to-day engineering work need to be simplified. However, the type of advanced models presented in this thesis can serve as a basis to study which aspects and parameters that are essential to consider in simplified prediction models.
Abstract [sv]
Beständigheten hos betong är av avgörande betydelse i alla typer av betongkonstruktioner där den kombinerade effekten av exponeringsförhållanden samt typ och kvalitet på betongmaterialet vanligtvis avgör nedbrytningshastigheten. Dessutom finns synergieffekter mellan olika nedbrytningsmekanismer som innebär att den kombinerade nedbrytningshastigheten är större än summan av de enskilda nedbrytningshastigheterna. För att noggrant kunna prediktera den återstående livislängden hos befintliga konstruktioner eller vid design av nya konstruktioner är det därför viktigt att ta hänsyn till samtliga av dessa aspekter. Detta innebär att olika kemiska och fysikaliska processer, samt hur dessa interagerar med varandra, måste tas i beaktande i modeller som avses användas för livslängdsbedömningar.
Den här licentiatuppsatsen presenterar den första delen av ett forskningsprojekt där målet är att studera vanligt förekommande nedbrytningsmekanismer i vattenbyggnadskonstruktioner och att öka kunskapen om hur dessa och andra relaterade fenomen kan beskrivas med matematiska modeller. Målet är också att studera hur olika nedbrytningsmekanismer samverkar och att hitta lämpliga tillvägagångssätt att ta hänsyn till dessa interaktioner i modellerna. För detta ändamål presenteras en litteraturstudie avseende vanligt förekommande skador i vattenbyggnadskonstruktioner. Dessutom behandlar denna i vilka typer av vattenbyggnadskonstruktioner och var i dessa som de olika typerna av skador vanligtvis observeras. De matematiska modeller som presenteras i denna del av projektet är inriktade på långtidsabsorption av vatten i lufttillsatt betong samt på frysning i delvis vattenmättad lufttillsatt betong. Båda modellerna är baserade på en multifasbeskrivning av betong samt poromekanik för att beskriva det kopplade hydro-termo-mekaniska beteendet. Uppsatsen presenterar också några av de grundläggande koncepten gällande multifasmodellering av porösa material, inklusive diskretisering av modellerna genom användning av finita elementmetoden (FEM). Dessutom beskrivs de förenklingar som vanligtvis införs i de generella makroskopiska balansekvationerna för massa, energi och rörelsemängd då cementbaserade material modelleras.
Simuleringsresultat från de utvecklade modellerna jämförs med försöksdata, fältmätningar samt andra simuleringsresultat från litteraturen för att verifiera modellerna samt visa hur de beter sig. Resultaten visar att båda modellerna ger tillfredställande resultat och kan användas för att uppskatta de långsiktiga fuktförhållandena i vattenbyggnadskonstruktioner samt frysinducerade töjningar i delvis vattenmättad lufttillsatt betong. Även om inga interaktioner mellan andra nedbrytningsmekanismer inkluderades i modellerna, så har utvecklingen samt användandet av dessa gett insikter gällande vilka parametrar som är viktiga att beakta i sådana vidareutvecklingar. Baserat på dessa insikter diskuteras också komplexiteten i att beskriva interaktionen mellan flertalet mekanismer i matematiska modeller. Det konstateras också att modeller som avses användas i dagligt ingenjörsarbete för livstidsbedömningar av vattenbyggnadskonstruktioner behöver förenklas. Däremot kan den typ av avancerade modeller som presenteras i denna uppsats användas som en grund för att studera vilka aspekter och parametrar som är viktiga att beakta i förenklade modeller.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. xii, 90
Series
TRITA-ABE-DLT ; 185
Keywords
degradation, deterioration mechanisms, hydraulic structures, air-entrained concrete, multiphase model, long-term moisture conditions, pore size distribution, freezing, partially saturated, finite element method
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-225125 (URN)978-91-7729-734-5 (ISBN)
Presentation
2018-05-08, B1, Brinellvägen 23, Stockholm, 12:30 (English)
Opponent
Supervisors
Note
QC 20180403
2018-04-032018-03-292022-09-13Bibliographically approved