kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Formation of a thin-walled Spider Silk Tube on a Micromachined Scaffold
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. (Microfluidics)
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. (Microfluidics)ORCID iD: 0000-0002-8925-2815
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology. KTH, School of Biotechnology (BIO), Centres, Centre for Bioprocess Technology, CBioPT.ORCID iD: 0000-0003-0140-419X
Show others and affiliations
2018 (English)In: Proceeding of 2018 IEEE 31st International Conference on Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers (IEEE), 2018, Vol. 2018, p. 83-85Conference paper, Published paper (Refereed)
Abstract [en]

This paper reports on the first formation of a thin bio-functionalized spider silk tube, supported by an internal micromachined scaffold, in which both the inside and outside of the tube wall are freely accessible. The silk tube could potentially be used as an artificial blood vessel in an in vitro tissue scaffold, where endothelial cells and tissue cells can grow on both sides of the silk tube.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 2018, p. 83-85
Series
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), ISSN 1084-6999
Keywords [en]
spider silk, tissue engineering, artificial blood vessel
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-225863DOI: 10.1109/MEMSYS.2018.8346488ISI: 000434960900023Scopus ID: 2-s2.0-85047021023ISBN: 9781538647820 (print)OAI: oai:DiVA.org:kth-225863DiVA, id: diva2:1196667
Conference
31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018, Belfast, United Kingdom, 21 January 2018 through 25 January 2018
Funder
EU, Horizon 2020, 675412Swedish Research Council, 621-2014-6200
Note

QC 20180515

Available from: 2018-04-10 Created: 2018-04-10 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Spider Silk Nanostructuring and its Applications for Tissue Engineering
Open this publication in new window or tab >>Spider Silk Nanostructuring and its Applications for Tissue Engineering
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis introduces new ways to produce micro-and nanostructures of recombinant spider silk and explores ways to characterize their topography, mechanical properties, cell compatibility, and permeability. The suitability of the formed structures for applications within tissue engineering, primarily in vitro tissue modeling, is also investigated.

One big challenge in drug development is that many drug candidates fail to pass in vivo studies in humans. This is largely because the currently used animal models fail to emulate the full human condition. Therefore, researchers aim to develop in vitro models of various tissues using human cells. These new systems will allow studies of biological responses and mechanisms related to human health and disease. To accurately represent what happens in the body, the materials used for cell culture should as closely as possible mimic their in vivo counterparts. Many of the materials used today are made out of plastic and lack physiologically relevant properties, and do not replicate the micro-and nano dimensions present in the native cell environment.

Spider silk has been suggested as a suitable replacement material for cell culture. The usage of spider silk for medical purposes is not new; it was used already in ancient Greece and Rome to staunch wounds. However, the spider's limited production has haltered the applicability. Lately, new doors have opened up through recombinant production of the base constituent of silk: the spider silk protein (spidroin). Recombinant spidroin production is not only scalable but also allows for facile integration of additional biofunctionality. With this building material at hand, it is possible to produce other formats than spider silk fibers, i.e., coatings, films, membranes, hydrogels, porous scaffolds, and microparticles. 

With the work presented in this thesis, the list is extended through the introduction of new methods to produce nanomembranes and uniformly shaped micro-and nanostructures by manipulating the liquid:air interface. Micropatterned mm-sized films, microfilms, nanochains, and nanowires were produced by manipulating a droplet of soluble spidroin solution on a superhydrophobic surface. Alterations in the concentration of spidroins, the motion of the droplet, and the dimensions of the pillars allow for precise control of the silk formation. The formed silk structures retained their shape upon release from the surface, and the culture of mammalian cells showed good compatibility with the silk structures. Nanofibrillar spider silk membranes mimicking the dimensions of basal membranes  (280 nm thick) were formed by letting spidroins self-assemble at the liquid:air interface of a standing solution. The assembly time, initial spidroin concentration, and beaker size are directly related to the membrane's thickness and size. The thereby obtained membranes were stable, had an internal nanofibrillar structure, could stretch over 200%, and were permeable to human plasma proteins. An in vitro blood vessel model was established by growing human endothelial cells and smooth muscle cells on opposing sides of the membrane, showing the potential of using the membranes for further in vitro modeling

Abstract [sv]

Den här avhandling introducerar nya sätt att producera mikro- och nanostrukturer av rekombinant spindelsilke och utforskar sätt att karakterisera deras topografi, mekaniska egenskaper, cellkompatibilitet och permeabilitet. Lämpligheten hos de formade strukturerna för applikationer inom vävnadsteknik, främst för in vitro vävnadsmodellering, undersöks också.

En stor utmaning i läkemedelsutveckling är att många kandidater inte uppvisar önskad effekt i in vivo studier i människor. Detta beror till stor del på att de djurmodeller som används i den primära utvärderingen inte efterliknar den mänskliga kroppen tillräckligt bra.  På grund av detta har forskare börjat utveckla metoder för att använda mänskliga celler i in vitro modeller av olika vävnader. Dessa nya system öppnar upp för möjligheten att studera biologiska reaktioner och mekanismer relaterade till människors hälsa. För att korrekt kunna modellera vad som händer i kroppen bör materialen som används för cellodling så nära som möjligt efterlikna deras motsvarigheter in vivo. Många av de material som används idag är gjorda av plast, saknar fysiologiskt relevanta egenskaper och replikerar inte de mikro- och nanodimensioner som finns i cellmiljön i kroppen.

Spindelsilke har föreslagits som ett lämpligt material för cellodling. Användningen av spindelsilke för medicinska ändamål är inte ny, utan det användes redan i det antika Grekland och Rom för att stoppa blödningar. Användbarheten begränsas dock av att spindlar enbart producerar en liten mängd silke. På senare tid har nya dörrar öppnats genom rekombinant produktion av baskomponenten i silket: spindelsilksproteiner (spidroiner). Rekombinant produktion as spidroiner är inte bara skalbar utan möjliggör också enkel integration av biofunktionalitet. Med byggmaterialet till hands är det även möjligt att producera fler format än enbart spindelsilkesfibrer, dvs. beläggningar, filmer, membran, hydrogeler, porösa strukturer och mikropartiklar.

Arbetet som presenteras i den här avhandlingen fyller på listan genom att introducera nya metoder för att producera nanomembran och enhetligt formade mikro- och nanostrukturer genom att manipulera vätske:luftgränssnittet. Mikromönstrade mm-filmer, mikrofilmer, nanokedjor och nanotrådar producerades genom att manipulera en droppe spidroinlösning på en superhydrofob yta. Förändringar i spidroinernas koncentrationen, droppens rörelse och dimensionerna på pelarna möjliggör exakt kontroll av silkeformationen. De formade silkestrukturerna behöll sin form efter frisättning från ytan, och odlingen av mänskliga celler visade god kompatibilitet med silkesstrukturerna. 280 nm tjocka nanofibrillära spindelsilkesmembran, som imiterar dimensionerna hos basala membran, bildades genom att låta spidroiner självinteragera vid vätske:luftgränssnittet i en stillastående lösning. Tid, initial spidroinkoncentration och bägardimensioner är direkt relaterade till membranets tjocklek och storlek. Nanomembranen formade via denna metod var stabila, kunde sträcks över 200% och var permeabla för mänskliga plasmaproteiner. En in vitro-blodkärlsmodell upprättades genom att växa humana endotelceller och glatta muskelceller på motsatta sidor av membranet, vilket påvisar potentialen att använda membranen för vidare in vitro modellering.

Place, publisher, year, edition, pages
Kungliga Tekniska högskolan, 2021
Series
TRITA-EECS-AVL ; 2021:15
Keywords
recombinant spider silk, nanostructures, microstrucutres, nanowires, nanochains, nanodisks, nanomembranes, tissue engineering, in-vitro models, medical technology, health technology, nanomedicine, rekombinant spindelsilke, nanostrukturer, mikrostrukturer, nanotrådar, nanokedjor, nanodiskar, nanomembran, vävnadsteknik, in vitro-modeller, medicinsk teknik, hälsoteknik, nanomedicin
National Category
Biochemistry and Molecular Biology
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-290887 (URN)978-91-7873-790-1 (ISBN)
Public defence
2021-03-26, Q2, 13:00 (English)
Opponent
Supervisors
Note

QC 20210309

Available from: 2021-03-09 Created: 2021-03-01 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

ThinWalledSpiderSilkTUbe(9195 kB)328 downloads
File information
File name FULLTEXT01.pdfFile size 9195 kBChecksum SHA-512
84d49286a8143c4058bbfc36c6bfb1bfdab805c3f102b027c13e740d5632b29555d959b3b17c96aa65f3c953d6636c02743c29cc120f325fd4b0238701061578
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Guo, WeijinGustafsson, LinneaJansson, RonnieHedhammar, Myvan der Wijngaart, Wouter

Search in DiVA

By author/editor
Guo, WeijinGustafsson, LinneaJansson, RonnieHedhammar, Myvan der Wijngaart, Wouter
By organisation
Micro and NanosystemsProtein TechnologyCentre for Bioprocess Technology, CBioPT
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 328 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1588 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf