Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A parallel code for direct numerical simulations of pipe Poiseuille flow
KTH, Tidigare Institutioner                               , Numerisk analys och datalogi, NADA.
(Engelska)Manuskript (Övrigt vetenskapligt)
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
URN: urn:nbn:se:kth:diva-7076OAI: oai:DiVA.org:kth-7076DiVA, id: diva2:11979
Anmärkning
QC 20100825Tillgänglig från: 2007-05-11 Skapad: 2007-05-11 Senast uppdaterad: 2010-08-25Bibliografiskt granskad
Ingår i avhandling
1. Stability of plane Couette flow and pipe Poiseuille flow
Öppna denna publikation i ny flik eller fönster >>Stability of plane Couette flow and pipe Poiseuille flow
2007 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis concerns the stability of plane Couette flow and pipe Poiseuille flow in three space dimensions. The mathematical model for both flows is the incompressible Navier--Stokes equations. Both analytical and numerical techniques are used.

We present new results for the resolvent corresponding to both flows. For plane Couette flow, analytical bounds on the resolvent have previously been derived in parts of the unstable half-plane. In the remaining part, only bounds based on numerical computations in an infinite parameter domain are available. Due to the need for truncation of this infinite parameter domain, these results are mathematically insufficient.

We obtain a new analytical bound on the resolvent at s=0 in all but a compact subset of the parameter domain. This is done by deriving approximate solutions of the Orr--Sommerfeld equation and bounding the errors made by the approximations. In the remaining compact set, we use standard numerical techniques to obtain a bound. Hence, this part of the proof is not rigorous in the mathematical sense.

In the thesis, we present a way of making also the numerical part of the proof rigorous. By using analytical techniques, we reduce the remaining compact subset of the parameter domain to a finite set of parameter values. In this set, we need to compute bounds on the solution of a boundary value problem. By using a validated numerical method, such bounds can be obtained. In the thesis, we investigate a validated numerical method for enclosing the solutions of boundary value problems.

For pipe Poiseuille flow, only numerical bounds on the resolvent have previously been derived. We present analytical bounds in parts of the unstable half-plane. Also, we derive a bound on the resolvent for certain perturbations. Especially, the bound is valid for the perturbation which numerical computations indicate to be the perturbation which exhibits largest transient growth. The bound is valid in the entire unstable half-plane.

We also investigate the stability of pipe Poiseuille flow by direct numerical simulations. Especially, we consider a disturbance which experiments have shown is efficient in triggering turbulence. The disturbance is in the form of blowing and suction in two small holes. Our results show the formation of hairpin vortices shortly after the disturbance. Initially, the hairpins form a localized packet of hairpins as they are advected downstream. After approximately $10$ pipe diameters from the disturbance origin, the flow becomes severely disordered. Our results show good agreement with the experimental results.

In order to perform direct numerical simulations of disturbances which are highly localized in space, parallel computers must be used. Also, direct numerical simulations require the use of numerical methods of high order of accuracy. Many such methods have a global data dependency, making parallelization difficult. In this thesis, we also present the process of parallelizing a code for direct numerical simulations of pipe Poiseuille flow for a distributed memory computer.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH, 2007. s. ix, 31
Serie
Trita-CSC-A, ISSN 1653-5723 ; 2007:07
Nyckelord
Hydrodynamic stability, plane Couette flow, pipe Poiseuille flow, direct numerical simulations, resolvent
Nationell ämneskategori
Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:kth:diva-4368 (URN)978-91-7178-651-7 (ISBN)
Disputation
2007-05-25, D3, Huvudbyggnaden, Lindstedtsv 3, KTH, 10:15
Opponent
Handledare
Anmärkning
QC 20100825Tillgänglig från: 2007-05-11 Skapad: 2007-05-11 Senast uppdaterad: 2010-08-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Åsén, Per-Olov
Av organisationen
Numerisk analys och datalogi, NADA
Strömningsmekanik och akustik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 269 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf